Context:Ferulago (Apiaceae) species have been used since ancient times for the treatment of intestinal worms, hemorrhoids, and as a tonic, digestive, aphrodisiac, or sedative, as well as in salads or as a spice due to their special odors.Objectives: This study reports the α-amylase and α-glucosidase inhibitory activities of dichloromethane extract and bioactive compounds isolated from Ferulago bracteata Boiss. & Hausskn. roots.Materials and methods: The isolated compounds obtained from dichloromethane extract of Ferulago bracteata roots through bioassay-guided fractionation and isolation process were evaluated for their in vitro α-amylase and α-glucosidase inhibitory activities at 5000–400 µg/mL concentrations. Compound structures were elucidated by detailed analyses (NMR and MS).Results: A new coumarin, peucedanol-2′-benzoate (1), along with nine known ones, osthole (2), imperatorin (3), bergapten (4), prantschimgin (5), grandivitinol (6), suberosin (7), xanthotoxin (8), felamidin (9), umbelliferone (10), and a sterol mixture consisted of stigmasterol (11), β-sitosterol (12) was isolated from the roots of F. bracteata. Felamidin and suberosin showed significant α-glucosidase inhibitory activity (IC50 0.42 and 0.89 mg/mL, respectively) when compared to the reference standard acarbose (IC50 4.95 mg/mL). However, none of the tested extracts were found to be active on α-amylase inhibition.Discussion and conclusions: The present study demonstrated that among the compounds isolated from CH2Cl2 fraction of F. bracteata roots, coumarins were determined as the main chemical constituents of this fraction. This is the first report on isolation and characterization of the bioactive compounds from root extracts of F. bracteata and on their α-amylase and α-glucosidase inhibitory activities.
In current study is done antioxidant, anticholinesterase, and carbonic anhydrase isoenzymes I and II inhibition assays, screening of biological active compounds and electronic microscopy analysis of secretory canals of fruits, flowers, roots, and aerial parts extracts and essential oils of Angelica purpurascens. Phenolic constituents, antioxidant, and anti-lipid peroxidation potentials of variants were estimated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) processes. Cholinesterase inhibition effect was detected through Ellman’s method. The GC/ Mass Spectrometry (MS) and gas chromatography (GC)-flame Ionization Detector (FID) was used for essential oils analysis. NMR techniques was used for identification of the isolated compounds. The fruit hexane and dichloromethane fractions exhibited a greater antioxidant capacity and total phenolic content. The dichloromethane fraction of fruit demonstrated the most higher acetylcholinesterase inhibition (39.86 ± 2.63%), while the fruit hexane fraction displayed the best inhibition towards butyrylcholinesterase (84.02 ± 1.28%). Cytosolic isoenzymes of human carbonic anhydrase (hCA) I, and II isoenzymes were influentially suppressed by flower and fruit dichloromethane fractions with 1.650 and 2.020 µM IC50 values, respectively. The electronic microscopy analysis of secretory canals found that the small number of secretory canals were at leaf while the largest shape of secretory canals was at the fruit. The secretory canals of roots, aerial parts, and fruits include more monoterpene hydrocarbons, while the canals, existing in the flowers are qualified by a higher presence of sesquiterpenes β-caryophyllene (12.1%), germacrene D (4.5%) and ether octyl acetate (11.9%). The highest level of monoterpene β-phellandrene (47.6%) and limonene (8.2%) were found in the fruit essential oil. The next isolated compounds from fruits of A. purpurascens like stigmasterol, β-sitosterol, bergapten, and oxypeucedanin have shown high anticholinesterase and antioxidant activities.
Coumarins and essential oils are the major components of the Apiaceae family and the Zosima genus. The present study reports anticholinesterase and antioxidant activities of extracts and essential oils from aerial parts, roots, flowers, fruits and coumarins—bergapten (1); imperatorin (2), pimpinellin (3) and umbelliferone (4)—isolated of the roots from Zosima absinthifolia. The investigation by light and scanning electron microscopy of the structures of secretory canals found different chemical compositions in the various types of secretory canals which present in the aerial parts, fruits and flowers. The canals, present in the aerial parts, are characterized by terpene hydrocarbons, while the secretory canals of roots, flowers and fruits include esters. Novel data of a comparative study on essential oils constituents of aerial parts, roots, flowers and fruits of Z. absinthfolia has been presented. The roots and fruits extract showed a high content of total phenolics and antioxidant activity. The GC-FID and GC-MS analysis revealed that the main components of the aerial parts, roots, flowers and fruits extracts were octanol (8.8%), octyl octanoate (7.6%), octyl acetate (7.3%); trans-pinocarvyl acetate (26.7%), β-pinene (8.9%); octyl acetate (19.9%), trans-p-menth-2-en-1-ol (4.6%); octyl acetate (81.6%), and (Z)-4-octenyl acetate (5.1%). The dichloromethane fraction of fruit and flower essential oil was characterized by the highest phenolics level and antioxidant activity. The dichloromethane fraction of fruit had the best inhibition against butyrylcholinesterase enzyme (82.27 ± 1.97%) which was higher then acetylcholinesterase inhibition (61.09 ± 4.46%) of umbelliferone. This study shows that the flowers and fruit of Z. absinthifolia can be a new potential resource of natural antioxidant and anticholinesterase compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.