Abstract. China is developing the nuclear data processing code Ruler, which can be used for producing multigroup cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.
The accuracy of the nuclear cross section data is a prerequisite for the accuracy of reactor physics calculations. The RXSP(Reactor Cross Section Processing Code) which is developed by REAL (Reactor Engineering Analysis Laboratory) of Department of Engineering Physics in Tsinghua University, has changed the situation in China that nuclear cross section processing has been dependent of NJOY for a long time. The key methods such as fast Doppler broadening, thermal libraries interpolation, and OpenMP parallel acceleration, can be achieved with RXSP. This code is able to process the original data of ENDF/B (Evaluated Nuclear Data File/B) efficiently and accurately to produce the continuous energy point cross section data which is necessary for RMC. By comparing with NJOY, The microscopic and macroscopic verification shows that RXSP has the same accuracy as NJOY while RXSP has saved greatly the processing time to meet the efficient demand in the frequent reactor physics-thermal-hydraulic coupling calculations to solve the complex questions related on a large number of materials and temperature. In addition, RXSP make it available to process the resonance parameters of the R-matrix Limited format.
The duplex pellets under a “Low-Interact” (LOWI) nuclear fuel design, which consist of an outer enriched annulus and a depleted or natural core, can provide lower center temperature and reduced probability of pellet-clad mechanical interact (PCMI). Analysis and experiments were done in 1970s to examine the benefits and cost of LOWI design for water-cooled reactors. Results showed that the additional economic cost of this design should not be neglected in spite of the benefits. However, due to the improvement of nuclear fuel fabrication technology in the past 30 years, the benefits of LOWI design become more significant, especially when the potential of other methods to elevate the power density and overcome the constraints on ramp rates in power reactors is running out. In order to evaluate the feasibility of deploying the LOWI fuel in commercial and research reactors, neutronics and thermal calculations are made to figure out the performance of duplex UO2 pellets in particular reactors. It is shown that the center temperature of pellet has been greatly reduced without any change on assembly and core geometry, which means the opportunity of less fission gas production, higher power density and more adequate safety margin. A mechanical analysis of a typical LOWI design is also done. The challenges on duplex pellet manufacture are also discussed. Several fabrication techniques are presented to show the potential of cutting the cost of pellet production.
This study aims to measure the radiation doses and estimate the associated lifetime attributable risks (LARs) of cancer incidence resulted from gemstone spectral imaging (GSI) and conventional polychromatic imaging (CPI) in computed tomography (CT) examinations. Organ doses were measured using an adult phantom and thermoluminescent dosimeters. Four scans, including head CT, thorax CT, abdomen CT and pelvis CT, were performed on the phantom. LARs of cancer incidence were estimated for Chinese population and US population. The effective doses of thorax CT was the highest. With CPI, it was 7.94 mSv for females, and 7.74 mSv for males. With GSI, it was 6.81 mSv for females, and 7.69 mSv for males. With GSI, the corresponding LARs for males and females aged 20-70 years were less than 0.062% and 0.154%, respectively. With CPI, these values were less than 0.074% and less than 0.171%, respectively. The LARs decreased in both US population and Chinese population when exposed age increased, with thorax scan causing the highest risk. GSI does not increased radiation exposure or cancer risk compared to CPI. These findings may allow the application of GSI in patients referred for CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.