We have solved numerically the diffusive Usadel equations that describe the spatially-varying superconducting proximity effect in Ti − Al thin-film bi-and trilayers with thickness values that are suitable for Kinetic Inductance Detectors (KIDs) to operate as photon detectors with detection thresholds in the frequency range of 50−90 GHz. Using Nam's extension of the Mattis-Bardeen calculation of the superconductor complex conductivity, we show how to calculate the surface impedance for the spatially varying case, and hence the surface impedance quality factor. In addition, we calculate energy-and spatially-averaged quasiparticle lifetimes at temperatures well-below the transition temperature and compare to calculation in Al. Our results for the pair-breaking threshold demonstrate differences between bilayers and trilayers with the same total film thicknesses. We also predict high quality factors and long multilayer-averaged quasiparticle recombination times compared to thinfilm Al. Our calculations give a route for designing KIDs to operate in this scientifically-important frequency regime.
We have developed a coupled-mode analysis framework for superconducting travelling-wave parametric amplifiers using the full Telegrapher's equations to incorporate loss-related behaviour. Our model provides an explanation of previous experimental observations regarding loss in amplifiers, advantages of concatenating amplifiers to achieve high gains, and signal gain saturation. This work can be used to guide the design of amplifiers in terms of the choice of material systems, transmission line geometry, operating conditions, and pump strength.
We present a formalism for modelling parametric amplification by resonators subject to ratelimited nonlinearity of mixed reactive/dissipative character, with particular relevance to superconducting devices. The non-linearity is assumed to be characterised by a single state parameter, which responds to changes in the energy stored in the resonator with finite response time. We show how the operating point and small signal amplification behaviour of the pumped resonator can be calculated, characterised and optimised in terms of a set of three dimensionless parameters.The formalism is then illustrated with a simple, first-order, model nonlinearity and the implications for amplification via quasiparticle generation in a superconductor discussed. Throughout we describe how the parameters needed to characterise the device can be determined experimentally from steady-state measurements. A key result of this paper is that rate-limiting of a nonlinear mechanism does not preclude amplification, although it does limit the bandwidth over which it may be achieved.
Superconducting thin-films are central to the operation of many kinds of quantum sensors and quantum computing devices: Kinetic Inductance Detectors (KIDs), Travelling-Wave Parametric Amplifiers (TWPAs), Qubits, and Spin-based Quantum Memory elements. In all cases, the nonlinearity resulting from the supercurrent is a critical aspect of behaviour, either because it is central to the operation of the device (TWPA), or because it results in non-ideal second-order effects (KID).Here we present an analysis of supercurrent carrying superconducting thin-films that is based on the generalized Usadel equations. Our analysis framework is suitable for both homogeneous and multilayer thin-films, and can be used to calculate the resulting density of states, superconducting transition temperature, superconducting critical current, complex conductivities, complex surface impedances, transmission line propagation constants, and nonlinear kinetic inductances in the presence of supercurrent. Our analysis gives the scale of kinetic inductance nonlinearity (I*) for a given material combination and geometry, and is important in optimizing the design of detectors and amplifiers in terms of materials, geometries, and dimensions.To investigate the validity of our analysis across a wide range of supercurrent, we have measured the transition temperatures of superconducting thin-films as a function of DC supercurrent. These measurements show good agreement with our theoretical predictions in the experimentally relevant range of current values.
Thin-film superconducting transmission lines play important roles in many signal transmission and detection systems, including qubit coupling and read-out schemes, electron spin resonance systems, parametric amplifiers, and various ultra high sensitivity detectors. Here we present a rigorous method for computing the electromagnetic behaviour of superconducting microstrip transmission lines and coplanar waveguides. Our method is based on conformal mapping, and is suitable for both homogeneous superconductors and proximity-coupled multilayers. We also present an effective conductivity approximation of multilayers, thereby allowing the multilayers to be analysed using existing electromagnetic design software. We compute the numerical results for Al-Ti bilayers and discuss the validity of our full computation and homogeneous approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.