The central role of 5,10-methylenetetrahydrofolate reductase (MTHFR) and methylenetetrahydrofolate dehydrogenase (MTHFD1) in folate metabolism renders polymorphisms in genes encoding these enzymes potential modulators of therapeutic response to antifolate chemotherapeutics. The analysis of 201 children treated with methotrexate for childhood acute lymphoblastic leukemia (ALL) showed that patients with either the MTHFR T677A1298 haplotype or MTHFD1 A1958 variant had a lower probability of event-free survival (EFS) in univariate analysis (hazard ratio (HR) ¼ 2.2, 95% confidence interval (CI), 1.0-4.7 and 2.8, 95% CI, 1.1-7.3, respectively). Multivariate analysis supported only the role of the MTHFR variant (HR ¼ 2.2, 95% CI, 0.9-5.6). However, the association of both genes with ALL outcome appears to be more obvious in the presence of another event-predisposing variant belonging to the same path of drug action. The combined effect of a thymidylate synthase (TS) triple repeat associated with increased TS levels, with either the MTHFR T677A1298 haplotype or MTHFD1 A1958 allele, resulted in a highly significant reduction of EFS (multivariate HR ¼ 9.0, 95% CI, 1.9-42.8 and 8.9, 95% CI, 1.8-44.6, respectively). These results reveal the role of gene-gene interactions within a folate pathway, and how they can correlate with relapse probabilities in ALL patients.
Interleukin-4 (IL-4) is a CD132-dependent cytokine known to activate the Jak-STAT pathway in different cells and cell lines. Although IL-4 has been demonstrated previously to be an agonist in human neutrophils, its capacity to activate different cell signaling pathways in these cells has never been investigated. Two types of IL-4 receptor (IL-4R) exist: the Type I (CD132/IL-4Ralpha heterodimer) and the Type II (IL-4Ralpha/IL-13Ralpha1 heterodimer). In a previous study, we demonstrated that neutrophils express the Type I receptor. Herein, using flow cytometry, we demonstrated that neutrophils, unlike U-937 cells, do not express IL-13Ralpha1 and IL-13Ralpha2 and confirmed the expression of CD132 and IL-4Ralpha on their surface. We also demonstrated that IL-4 induced phosphorylation of Syk, p38, Erk-1/2, JNK, Jak-1, Jak-2, STAT6, and STAT1 and that treatment of cells with the inhibitors piceatannol, SB203580, PD98059, or AG490 reversed the ability of IL-4 to delay neutrophil apoptosis. Using RT-PCR, we demonstrated for the first time that neutrophils express mRNA for all suppressor of cytokine signaling (SOCS) members, namely SOCS1-7 and cytokine-inducible Src homology 2 protein. It is interesting that IL-4 increased expression of SOCS3 at the mRNA and protein levels. The effect of IL-4 on SOCS3 protein expression was increased markedly when the proteasome inhibitor MG132 was added to the cultures, but this was inhibited by cycloheximide, suggesting that SOCS3 is de novo-synthesized in response to IL-4. We conclude that neutrophils express only the Type I IL-4R on their surface and that IL-4 signals via different cell signaling pathways, including the Jak/STAT/SOCS pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.