Tissue-nonspecific alkaline phosphatase (TNAP) is essential for bone matrix mineralization, but the central mechanism for TNAP action remains undefined. We observed that ATP-dependent (45)Ca precipitation was decreased in calvarial osteoblast matrix vesicle (MV) fractions from TNAP-/- mice, a model of infantile hypophosphatasia. Because TNAP hydrolyzes the mineralization inhibitor inorganic pyrophosphate (PP(i)), we assessed phosphodiesterase nucleotide pyrophosphatase (PDNP/NTPPPH) activity, which hydrolyzes ATP to generate PP(i). Plasma cell membrane glycoprotein-1 (PC-1), but not the isozyme B10 (also called PDNP3) colocalized with TNAP in osteoblast MV fractions and pericellular matrix. PC-1 but not B10 increased MV fraction PP(i) and inhibited (45)Ca precipitation by MVs. TNAP directly antagonized inhibition by PC-1 of MV-mediated (45)Ca precipitation. Furthermore, the PP(i) content of MV fractions was greater in cultured TNAP-/- than TNAP+/+ calvarial osteoblasts. Paradoxically, transfection with wild-type TNAP significantly increased osteoblast MV fraction NTPPPH. Specific activity of NTPPPH also was twofold greater in MV fractions of osteoblasts from TNAP+/+ mice relative to TNAP-/- mice. Thus TNAP attenuates PC-1/NTPPPH-induced PP(i) generation that would otherwise inhibit MV-mediated mineralization. TNAP also paradoxically regulates PC-1 expression and NTPPPH activity in osteoblasts.
Tissue nonspecific alkaline phosphatase (TNAP) knockout (ko) mice manifest defects in bone mineralization that mimic the phenotypic abnormalities of infantile hypophosphatasia. In this article, we have searched for phenotypic differences between calvarial osteoblasts and osteoclasts in wild-type (wt), heterozygous and homozygous TNAP null mice. In vitro release of 45
We have analyzed 16 missense mutations of the tissue-nonspecific AP (TNAP) gene found in patients with hypophosphatasia. These mutations span the phenotypic spectrum of the disease, from the lethal perinatal/ infantile forms to the less severe adult and odontohypophosphatasia. Site-directed mutagenesis was used to introduce a sequence tag into the TNAP cDNA and eliminate the glycosylphosphatidylinositol (GPI)-anchor recognition sequence to produce a secreted epitope-tagged TNAP (setTNAP). The properties of GPI-anchored TNAP (gpiTNAP) and setTNAP were found comparable. After introducing each single hypophosphatasia mutation, the setTNAP and mutant TNAP cDNAs were expressed in COS-1 cells and the recombinant flagged enzymes were affinity purified. We characterized the kinetic behavior, inhibition, and heat stability properties of each mutant using the artificial substrate p-nitrophenylphosphate (pNPP) at pH 9.8. We also determined the ability of the mutants to metabolize two natural substrates of TNAP, that is, pyridoxal-5-phosphate (PLP) and inorganic pyrophosphate (PPi), at physiological pH. Six of the mutant enzymes were completely devoid of catalytic activity (R54C, R54P, A94T, R206W, G317D, and V365I), and 10 others (A16V, A115V, A160T, A162T, E174K, E174G, D277A, E281K, D361V, and G439R) showed various levels of residual activity. The A160T substitution was found to decrease the catalytic efficiency of the mutant enzyme toward pNPP to retain normal activity toward PPi and to display increased activity toward PLP. The A162T substitution caused a considerable reduction in the pNPPase, PPiase, and PLPase activities of the mutant enzyme. The D277A mutant was found to maintain high catalytic efficiency toward pNPP as substrate but not against PLP or PPi. Three mutations ( E174G, E174K, and E281K) were found to retain normal or slightly subnormal catalytic efficiency toward pNPP and PPi but not against PLP. Because abnormalities in PLP metabolism have been shown to cause epileptic seizures in mice null for the TNAP gene, these kinetic data help explain the variable expressivity of epileptic seizures in hypophosphatasia patients. (J Bone Miner Res 2002;17:1383-1391)
Nineteen monoclonal antibodies (MAbs) against tissue-nonspecific (liver/bone/kidney) alkaline phosphatase (TNALP) were investigated in the ISOBM TD-9 Workshop. These MAbs were generated with antigens obtained from human bone tissue (n = 9), human osteosarcoma cell lines (SaOS-2 and TPX; n = 7) and human liver tissue (n = 3). The evaluation included the following antigen forms: (a) commercially available preparations of human bone ALP (BALP) and liver ALP (LALP); (b) human BALP isoforms, B/I, B1 and B2; and (c) soluble secreted epitope-tagged recombinant human TNALP (setTNALP) expressed in COS-1, osteosarcoma (SaOS-2) and hepatoma (Huh2) cell lines. In addition, 16 TNALP mutant cDNAs corresponding to a wide spectrum of reported hypophosphatasia mutations were used in an attempt to map specific immunoreactive epitopes on the surface of the TNALP molecule. The TD-9 MAbs were evaluated by immunoradiometric (IRMA) assays, cross-inhibition and different enzyme immunoassay designs. No indications of explicit tissue discriminatory immunoreactivities of the investigated MAbs against TNALP were found. However, certain IRMA combinations of MAbs increased the specificity of BALP measurements. All MAbs bound to the three BALP isoforms B/I, B1 and B2, but none of the investigated MAbs were specific for any of the isoforms. Significant differences were, however, found in immunoreactivity between these isoforms, with cross-reactivities ranging from 21 to 109% between the two major BALP isoforms B1 and B2. Desialylation with neuraminidase significantly increased the MAb affinity for the BALP isoforms B/I, B1 and B2, and also decreased the observed differences in cross-reactivity between these isoforms. We suggest, therefore, that the MAb affinity is dependent on the amount/number of terminal sialic acid residues located at the five putative N-glycosylation sites. Based on the overall results, we present a putative three-dimensional model of the TNALP molecule with positioning of the four major antigenic domains (designated A–D) of the investigated MAbs. The TNALP molecule is depicted as a homodimer, hence most, but not necessarily all, epitopes are displayed twice. The antigenic domains were positioned with the following assumptions: domain A was positioned close to the active site since most of these MAbs interfered with the catalytic activity. Interestingly, both MAbs included in the commercial BALP kits were grouped with domain A. Moreover, 4 of the 5 putative N-glycosylation sites (with terminal sialic acid residues) are located within, or with close proximity to, domain A. Domain B was localized at the top flexible loop (crown domain) of the TNALP molecule. Domain C was clearly defined by the IRMA assay combinations and by site-directed mutants of TNALP to be close to residue E281, which is located near the fourth metal binding site, likely to be occupied by a calcium ion. Domain D was positioned close to residues A115, A162 and E174, but this domain was also close to the GPI anchor site. In conclusion, none of the 19 invest...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.