Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography.
Fungi are principal actors of forest soils implied in many ecosystem services and the mediation of tree's responses. Forecasting fungal responses to environmental changes is necessary for maintaining forest productivity, although our partial understanding of how abiotic and biotic factors affect fungal communities is restricting the predictions. We examined fungal communities of Pinus sylvestris along elevation gradients to check potential responses to climate change-associated factors. Fungi of roots and soils were analysed at a regional scale, by using a high-throughput sequencing approach. Overall soil fungal richness increased with pH, whereas it did not vary with climate. However, when representative sub-assemblages, i.e. Ascomycetes/Basidiomycetes, and families were analysed, they differentially answered to climatic and edaphic variables. This response was dependent on where they settled, i.e. soil versus roots, and/or on their lifestyle, i.e. mycorrhizal or not, suggesting different potential functional weights within the community. Our results revealed a highly compartmentalized and contrasted response of fungal communities in forest soils. The different response of fungal sub-assemblages indicated a range of possible selective direct and indirect (i.e. via host) impacts of climatic variations on these communities, of unknown functional consequences, that helps in understanding potential fungal responses under future global change scenarios.
Mediterranean forests have always had to cope with challenging environmental conditions that change across different temporal and spatial scales. However, the rapidity of current environmental change, driven by greater-than-ever human influences on natural processes, is unprecedented and has triggered renewed research endeavour into the impacts on Mediterranean ecosystems (Valladares 2008). The climate of Mediterranean areas is expected to become drier and warmer, with decreasing water availability for plants and increasing evapotranspiration (IPCC 2007). This will result in more acute physiological stress, increased importance of species-specific tolerances, plasticity and thresholds, phenological change and recruitment effects (Montserrat-Martín et al. 2009; Morin et al. 2010; Peñ uelas et al. 2004). Several studies have demonstrated how the conditions currently experienced by seedlings and saplings are quite different to those when current adults recruited (Lloret & Siscart 1995; Montoya 1995). The anticipated impacts of such changes have led to a renewed interest in classic ecophysiological research into drought stress and tolerance (Wikelskia & Cooke 2006), as well as population-level studies on phenotypic plasticity and the evolution of tolerance in certain key tree species, such as Holm (Quercus ilex) and cork oaks (Q. suber) (Gimeno et al. 2009; Ramírez-Valiente et al. 2010).
Quantifying dispersal is fundamental to understanding the effects of fragmentation on populations. Although it has been shown that patch and matrix quality can affect dispersal patterns, standard metapopulation models are usually based on the two basic variables, patch area and connectivity. In 2004 we studied migration patterns among 18 habitat patches in central Spain for the butterfly Iolana iolas, using mark Árelease Árecapture methods. We applied the virtual migration (VM) model and estimated the parameters of emigration, immigration and mortality separately for males and females. During parameter estimation and model simulations, we used original and modified patch areas accounting for habitat quality with three different indices. Two indices were based on adult and larval resources (flowers and fruits) and the other one on butterfly density. Based on unmodified areas, our results showed that both sexes were markedly different in their movements and mortality rates. Females emigrated more frequently from patches, but males that emigrated were estimated to move longer daily dispersal distances and suffer higher mortality than females during migration. Males were more likely to emigrate from small than from large patches, but patch area had no significant effect on female emigration. The effects of area on immigration rate and the within-patch mortality were similar in both sexes. Based on modified areas, the estimated parameter values and the model simulation results were similar to those estimated using the unmodified patch areas. One possible reason for the failure to significantly improve the parameter estimates of the VM model is the fact that resource quantity and butterfly population sizes were strongly correlated with patch area. Our results suggest that the standard VM modelling approach, based on patch area and connectivity, can provide a realistic picture of the movement patterns of I. iolas .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.