A oxidação eletrocatalítica de hidrazina foi estudada sobre um eletrodo de grafite pirolítico ordinário modificado com tetrapiridinoporfirazina de ferro (FeTPyPz) com as técnicas de voltametria cíclica e de eletrodo de disco rotatório. Análise dos voltamogramas registrados a diferentes velocidades de varredura do potencial e das curvas de polarização para diferentes velocidades de rotação do eletrodo mostraram que a reação de eletroxidação de hidrazina sobre FeTPyPz processa-se de acordo com um mecanismo envolvendo 4 elétrons e com a formação de N 2 como principal produto. Os parâmetros cinéticos sugerem que a segunda etapa de transferência de carga é a etapa determinante da velocidade da reação. A atividade eletrocatalítica do complexo FeTPyPz depende do potencial formal do processo redox Fe(II)/Fe(I), que apresentou bom ajuste num gráfico do tipo vulcano formado por diferentes ftalocianinas de ferro, indicando que este potencial formal é um bom indicador da reatividade destes complexos.The electrocatalytic oxidation of hydrazine was studied using an ordinary pyrolytic graphite electrode modified with iron tetrapyridinoporphyrazine complex (FeTPyPz), employing cyclic voltammetry and rotating disk electrode techniques. Analyses of the voltammograms recorded at different potential scan rates and the polarization curves at different electrode rotation rates showed that the reaction of electrooxidation of hydrazine on FeTPyPz occurs via 4-electrons with the formation of N 2 as main product. The kinetic parameters suggest that the second electron transfer step is rate controlling. The activity of FeTPyPz depends on its Fe(II)/Fe(I) formal potential and fits well in a volcano plot that includes several iron phthalocyanines, indicating that such formal potential is a good reactivity index for these complexes.Keywords: hydrazine oxidation, modified graphite electrode, iron tetrapyridinoporphyrazine, volcano plot
IntroductionThe study of chemically modified electrodes has attracted considerable interest in the last decades as researchers attempt to exert more control over the chemical nature of the electrode surface. Molecules of known reactivity are then incorporated or confined on the electrode surface, acting as mediators for electron transfer reactions. Applications include electrocatalysis, electroanalysis, sensors and biosensors, as well as in electrochemical detection systems used in flow-injection analysis or high performance liquid chromatography. One applicability of these electrodes refers to the oxidation and detection of hydrazine, an important chemical compound used in jet and rocket fuels and in the production of agricultural and textile chemicals, drugs, explosives, photographic developers, blowing agents used in the manufacture of foam rubber, and in the prevention of rusting in boilers and nuclear reactors. 31 Furthermore, the detection of hydrazine and its derivatives is very important in pharmacology due to the recognition as carcinogenic and hepatotoxic substances. 31,32 In order to reduce the typi...
This work reports the use of iron tetrapyridinoporphyrazine (FeTPyPz) as a highly selective catalyst in the construction of an electrochemical sensor for estradiol valerate (EV) determination. The sensor was prepared by modifying a carbon paste with FeTPyPz. The best results were obtained in a mixture of acetonitrile (MeCN) and 0.1 mol L(-1) phosphate buffer solution (pH 6.0) in a volume ratio of 47 : 53. A linear response range was observed between 45 and 450 micromol L(-1) with a sensitivity of 12160 +/- 306 microA L mol(-1) and quantification and detection limits of 45 and 13 micromol L(-1), respectively. The repeatability, expressed as the relative standard deviation (RSD) for n = 10, was 5.9% ([EV] = 50 micromol L(-1)). The reproducibility (RSD) for the sensor construction was better than 4% and the operational stability (RSD) over 50 measurements was 1.8%. A detailed investigation regarding the selectivity and electrochemical characteristics was carried out. Finally, in a first step to evaluate the application potential of the sensor, it was successfully applied to determine EV in a commercial formulation.
The use of iron(III) tetra-(N-methyl-4-pyridyl) porphyrin (FeIIIT4MpyP) and histidine (His) in the construction of an amperometric sensor for phenolic compound determinations is reported, based on horseradish peroxidase (HRP) chemistry. The sensor was prepared by modifying a glassy carbon electrode with Nafion membrane doped with FeIIIT4MpyP and His, in a mass ratio of 1:2. The sensor presented its best performance at 50 mV vs. SCE in 0.1 mol l(-1) succinate buffer (pH = 4.0) containing 125 micromol l(-1) H2O2. Under optimized operational conditions, a linear response range from 0.6 to 6.0 micromol l(-1) was obtained with a sensitivity of 61 nA cm(-2) micromol l(-1). The detection limit for catechol determination was 0.35 micromol l(-1). The response time was less than 0.5 s. The proposed sensor presented stable responses for 100 successive determinations, while satisfactory responses were observed even after 200 measurements. The repeatability, evaluated in terms of relative standard deviation, was 4% for n = 7. The signal responses for other phenolic compounds, including those of environmental and clinical interest, were also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.