Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016International audienceFocusing is a general technique for transforming a sequent proof system into one with a syntactic separation of non-deterministic choices without sacrificing completeness. This not only improves proof search, but also has the representational benefit of distilling sequent proofs into synthetic normal forms. We show how to apply the focusing technique to nested sequent calculi, a generalization of ordinary sequent calculi to tree-like instead of list-like structures. We thus improve the reach of focusing to the most commonly studied modal logics, the logics of the modal S5 cube. Among our key contributions is a focused cut-elimination theorem for focused nested sequents
The logic of Bunched Implications (BI) freely combines additive and multiplicative connectives, including implications; however, despite its well-studied proof theory, proof-search in BI has always been a difficult problem. The focusing principle is a restriction of the proof-search space that can capture various goal-directed proof-search procedures. In this paper we show that focused proof-search is complete for BI by first reformulating the traditional bunched sequent calculus using the simpler data-structure of nested sequents, following with a polarised and focused variant that we show is sound and complete via a cut-elimination argument. This establishes an operational semantics for focused proof-search in the logic of Bunched Implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.