In this research, a novel magnetic nanocatalyst based on iron oxide nanoparticles linked with pyridinium hydrotribromide (Fe3O4@PyHBr3) was synthesized in three steps. In the first step, 3-(aminopropyl)triethoxysilane (APTES) was reacted with 4-(bromomethyl)pyridine hydrobromide. In the second step, the product obtained in the first step was reacted with iron oxide nanoparticles. In the last step, a grinding reaction was carried out with KBr and HIO4 in a mortar. The Fe3O4@PyHBr3 nanocatalyst was characterized by FT-IR, CHN, XRD, SEM, TGA and VSM analysis. The magnetic nanocatalyst was used as a catalyst for the selective oxidation of alcohols to aldehydes and ketones using 30% H2O2 as oxidant in a short time and with high yields. Moreover, no overoxidation of the alcohols was observed. The nanocatalyst was efficiently recycled in five consecutive cycles without significant loss of its catalytic activity. Moreover, trimethylsilylation and tetrahydropyranylation of alcohols were carried out in the presence of this nanocatalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.