Local contact openings in SiNx layers that passivate the front side of solar cells offer an attractive alternative to the current standard “fire-through” screen printing process for front grid fabrication. Additionally, this technology can be used for enabling a selective emitter. In the present paper, we investigate laser ablation of SiNx layers on planar and textured silicon surfaces for various laser wavelengths and pulse durations in the nanosecond (ns) to femtosecond (fs) range. We characterize the dark J-V characteristics of diodes with laser contact openings in the SiNx layer passivating the emitter. Our results show that on alkaline textured surfaces the ablation by a ns laser produces less damage than by an ultrashort pulse laser. The dark currents of alkaline textured diodes treated with picosecond (ps) or fs lasers are one order of magnitude higher than those of ns laser treated diodes. High ideality factors furthermore indicate crystal damage in the ∼500 nm deep space charge region of the diodes. Scanning electron microscope and transmission electron microscope images of textured samples, confirm the presence of extensive and deep crystal damage after ps laser ablation, which are not observed in laser treated samples with planar surfaces. Correspondingly, for planar surfaces we find for both, ns and for ps laser ablated regions, emitter saturation current densities J0e,abl of ∼2 pA/cm2. The recombination in textured samples in contrast differs vastly for ns and ps laser ablation. The ns laser results in an only slightly increased value of 3.7 pA/cm2 while the ps laser treated sample was not evaluable due to severe crystal damage leading to effective lifetimes of <5 μs.
Recently, it was shown that the boron-oxygen complex responsible for the light-induced lifetime degradation in oxygen-rich boron-doped silicon can be permanently deactivated by illumination at elevated temperatures. Since the degradation is particularly harmful in low-resistivity Czochralski silicon (Cz-Si), we apply the deactivation procedure to a high-efficiency rear interdigitated single evaporation emitter wrap-through solar cell made on 1.4Ωcm B-doped Cz-Si. The energy conversion efficiency is thereby increased by more than 1% absolute compared to the degraded state to 20.3% on a designated area of 92cm2 and is furthermore shown to be stable under illumination at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.