Adoptive immunotherapy with antigen-specific T cells has been successfully used to treat certain infectious diseases and cancers. Although more patients may profit from T cell therapy, its more frequent use is restricted by limitations in current T cell generation strategies. The most commonly applied peptide-based approaches rely on the knowledge of relevant epitopes. Therefore, T cells cannot be generated for diseases with unknown epitopes or for patients with unfavorable HLA types. We developed a peptide-based approach for HLA type-independent generation of specific T cells against various proteins. It is based on short-time stimulation with peptide libraries that cover most CD4 + and CD8 + T cell epitopes of given proteins. The procedure requires no prior knowledge of epitopes because libraries are synthesized solely on the basis of the protein's amino acid sequence. Stimulation is followed by immunomagnetic selection of activated IFN-c-secreting cells and nonspecific expansion. To evaluate the protocol, we generated autologous T cells specific for a well-characterized antigen, the human cytomegalovirus phosphoprotein 65 (pp65). Generated T cell lines consisted of pp65-specific CD4 + and CD8 + lymphocytes that displayed antigen-specific killing and proliferation. The protocol combines the biosafety of peptide-based approaches with HLA type independence and may help to advance adoptive immunotherapy in the future.
Proteinase 3C of hepatitis A virus (HAV) plays a key role in the viral life cycle by generating mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, 3C binds to viral RNA, and thus influences viral genome replication. In order to investigate the interplay between proteolytic activity and RNA binding at the molecular level, we subjected HAV 3C and three variants carrying mutations of the cysteine residues [C24S (Cys-24-->Ser), C172A and C24S/C172A] to proteolysis assays with peptide substrates, and to surface plasmon resonance binding studies with peptides and viral RNA. We report that the enzyme readily forms dimers via disulphide bridges involving Cys-24. Dissociation constants (K(D)) for peptides were in the millimolar range. The binding kinetics for the peptides were characterized by k(on) and k(off) values of the order of 10(2) M(-1) x s(-1) and 10(-2) to 10(-1) s(-1) respectively. In contrast, 3C binding to immobilized viral RNA, representing the structure of the 5'-terminal domain, followed fast binding kinetics with k(on) and k(off) values beyond the limits of the kinetic resolution of the technique. The affinity of viral RNA depended strongly on the dimerization status of 3C. Whereas monomeric 3C bound to the viral RNA with a K(D) in the millimolar range, dimeric 3C had a significantly increased binding affinity with K(D) values in the micromolar range. A model of the 3C dimer suggests that spatial proximity of the presumed RNA-binding motifs KFRDI is possible. 3C binding to RNA was also promoted in the presence of substrate peptides, indicating co-operativity between RNA binding and protease activity. The data imply that the dual functions of 3C are mutually dependent, and regulate protein and RNA synthesis during the viral life cycle.
Prophylactic HPV vaccines have been introduced to reduce the incidence of cervical cancer in young women. Women already infected with HPV could benefit from a therapeutic HPV vaccination. Hence, it is important to continue the development of therapeutic HPV vaccines to lower the rate of HPV-associated malignancies and crucial to evaluate vaccine efficacy clinically. This clinical review represents an attempt to elucidate the theories supporting the development of an HPV vaccine with a therapeutic effect on human papillomavirus-induced malignancies of the cervix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.