A major limitation of current reports on insect declines is the lack of standardized, long-term, and taxonomically broad time series. Here, we demonstrate the utility of environmental DNA from archived leaf material to characterize plant-associated arthropod communities. We base our work on several multi-decadal leaf time series from tree canopies in four land use types, which were sampled as part of a long-term environmental monitoring program across Germany. Using these highly standardized and well-preserved samples, we analyze temporal changes in communities of several thousand arthropod species belonging to 23 orders using metabarcoding and quantitative PCR. Our data do not support widespread declines of α-diversity or genetic variation within sites. Instead, we find a gradual community turnover, which results in temporal and spatial biotic homogenization, across all land use types and all arthropod orders. Our results suggest that insect decline is more complex than mere α-diversity loss, but can be driven by β-diversity decay across space and time.
In order to gain a better insight into pesticide and pollutant exposure in forests, a rapid and sensitive gas chromatorgraphy- tandem mass spectrometry (GC-MS/MS) method for the determination of 208...
A major limitation of current reports on insect declines is the lack of standardized, long-term, and taxonomically broad time series. Here, we demonstrate the utility of environmental DNA from archived leaf material to characterize plant-associated arthropod communities. We base our work on several multi-decadal leaf time series from tree canopies in four land use types, which were sampled as part of a long-term environmental monitoring program across Germany. Using these highly standardized and well-preserved samples, we analyze temporal changes in communities of several thousand arthropod species belonging to 23 orders using metabarcoding and quantitative PCR. Our data do not support widespread declines of α-diversity or genetic variation within sites. Instead, we find a gradual community turnover, which results in temporal and spatial biotic homogenization, across all land use types and all arthropod orders. Our results suggest that insect decline is more complex than mere α-diversity loss, but can be driven by β-diversity decay across space and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.