Textiles are a common material in healthcare facilities; therefore it is important that they do not pose as a vehicle for the transfer of pathogens to patients or hospital workers. During the course of use hospital textiles become contaminated and laundering is necessary. Laundering of healthcare textiles is most commonly adequate, but in some instances, due to inappropriate disinfection or subsequent recontamination, the textiles may become a contaminated inanimate surface with the possibility to transfer pathogens. In this review we searched the published literature in order to answer four review questions: (1) Are there any reports on the survival of microorganisms on hospital textiles after laundering? (2) Are there any reports that indicate the presence of microorganisms on hospital textiles during use? (3) Are there any reports that microorganisms on textiles are a possible source infection of patients? (4) Are there any reports that microorganisms on textiles are a possible source infection for healthcare workers?
Disinfectants are used to reduce the concentration of pathogenic microorganisms to a safe level and help to prevent the transmission of infectious diseases. However, bacteria have a tremendous ability to respond to chemical stress caused by biocides, where overuse and improper use of disinfectants can be reflected in a reduced susceptibility of microorganisms. This review aims to describe whether mutations and thus decreased susceptibility to disinfectants occur in bacteria during disinfectant exposure. A systematic literature review following PRISMA guidelines was conducted with the databases PubMed, Science Direct and Web of Science. For the final analysis, 28 sources that remained of interest were included. Articles describing reduced susceptibility or the resistance of bacteria against seven different disinfectants were identified. The important deviation of the minimum inhibitory concentration was observed in multiple studies for disinfectants based on triclosan and chlorhexidine. A reduced susceptibility to disinfectants and potentially related problems with antibiotic resistance in clinically important bacterial strains are increasing. Since the use of disinfectants in the community is rising, it is clear that reasonable use of available and effective disinfectants is needed. It is necessary to develop and adopt strategies to control disinfectant resistance.
A collection of printed fabrics for men’s shirts was designed and prepared using computer‐aided design/computer‐aided manufacturing technology. The colours for designs were ink‐jet printed on cotton fabrics with pigments and ultraviolet‐cured. These prints represented the target colours for subsequent flat‐screen printing, which was performed using pigment printing pastes and thermal curing. For an exact transfer of colours of the ink‐jet‐printed standard into the screen‐printing process, a computer recipe prediction method was used. A comparison of colorimetric parameters of fabrics printed with both printing techniques shows minimal and acceptable differences in the CIELab colour values. A comparison of colour fastness properties proves that very good colour fastness is achieved on the pigment‐printed fabrics produced with both printing techniques. The flat‐screen‐printed fabrics show better colour fastness to washing, perspiration and rubbing, while ink‐jet‐printed fabrics show better colour fastness to dry‐cleaning and light. The fabrics printed with both printing techniques have high rigidity and non‐elastic properties. The mechanical and physical parameters are strongly dependent upon the amount of the dry substance of the printing media applied on the cotton fabric surface, which is higher on screen‐printed fabrics. The ink‐jet‐printed fabrics show better air permeability than flat‐screen‐printed fabrics.
Protective clothing is required in the food-processing industry, to protect workers from contamination by bacteria, fungi, viruses, prions etc. contained in the secretions and raw meat of slaughtered animals, and to protect the meat from being contaminated by microorganisms carried by the workers. It is well-understood that textiles are a control point (CP), and must be appropriately cleaned and disinfected in order to prevent biocontamination. Although the laundering procedure itself is important for achieving disinfection, it is also essential to maintain an appropriate hygiene level in the laundry, in order to prevent recontamination of textiles by environmental viable microorganisms. In this study, a sanitary-microbiological analysis was carried out in selected CPs in two laundries. Chemo-thermal washing efficiency was determined by evaluating the anti-bacterial effect against Enterococcus faecium and Staphylococcus aureus. The hygienic state of the laundries was determined by evaluating the number and type of microorganisms at selected CPs throughout the whole laundering procedure. The results indicated that the sanitary condition of both laundries did not reach the required levels and that several microbes were resistant to cleaning and disinfecting agents. It is obvious from the results that achievement of an appropriate hygiene level during laundering textiles from the food processing industry requires the implementation of appropriate corrective monitoring measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.