We report heating rate measurements in a microfabricated gold-onsapphire surface electrode ion trap with trapping height of approximately 240 µm. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed on metal surfaces and amorphous dielectrics.
We use a single ion as an movable electric field sensor with accuracies on the order of a few V/m. For this, we compensate undesired static electric fields in a planar RF trap and characterize the static fields over an extended region along the trap axis. We observe a strong buildup of stray charges around the loading region on the trap resulting in an electric field of up to 1.3 kV/m at the ion position. We also find that the profile of the stray field remains constant over a time span of a few months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.