Interstitial cystitis/painful bladder syndrome (IC) is a chronic syndrome of unknown etiology that presents with bladder pain, urinary frequency, and urgency. The lack of specific biomarkers and a poor understanding of underlying molecular mechanisms present challenges for disease diagnosis and therapy. The goals of this study were to identify noninvasive biomarker candidates for IC from urine specimens and to potentially gain new insight into disease mechanisms using a nuclear magnetic resonance (NMR)-based global metabolomics analysis of urine from female IC patients and controls. Principal component analysis (PCA) suggested that the urinary metabolome of IC and controls was clearly different, with 140 NMR peaks significantly altered in IC patients (FDR < 0.05) compared to that in controls. On the basis of strong correlation scores, fifteen metabolite peaks were nominated as the strongest signature of IC. Among those signals that were higher in the IC group, three peaks were annotated as tyramine, the pain-related neuromodulator. Two peaks were annotated as 2-oxoglutarate. Levels of tyramine and 2-oxoglutarate were significantly elevated in urine specimens of IC subjects. An independent analysis using mass spectrometry also showed significantly increased levels of tyramine and 2-oxoglutarate in IC patients compared to controls. Functional studies showed that 2-oxoglutarate, but not tyramine, retarded growth of normal bladder epithelial cells. These preliminary findings suggest that analysis of urine metabolites has promise in biomarker development in the context of IC.
Background Extracellular vesicle (EV)–mimetic nanovesicles (NVs) from embryonic stem cells have been observed to stimulate neurovascular regeneration in the streptozotocin-induced diabetic mouse. Pericytes play important roles in maintaining penile erection, yet no previous studies have explored the effects of pericyte-derived NVs (PC-NVs) in neurovascular regeneration in the context of erectile dysfunction. Aim To investigate the potential effect of PC-NVs in neurovascular regeneration. Methods PC-NVs were isolated from mouse cavernous pericytes, and neurovascular regeneration was evaluated in an in vitro study. Twelve-week-old C57BL/6J mice were used to prepare cavernous nerve injury model. Erectile function evaluation, histologic examination of the penis, and Western blots were assessed 2 weeks after model creation and PC-NVs treatment. Outcomes The main outcomes of this study are PC-NVs characterization, intracavernous pressure, neurovascular regeneration in the penis, and in vitro functional evaluation. Results The PC-NVs were extracted and characterized by cryotransmission electron microscopy and EV-positive (Alix, TSG101, CD81) and EV-negative (GM130) markers. In the in vivo studies, PC-NVs successfully improved erectile function in cavernous nerve injury mice (∼82% of control values). Immunofluorescence staining showed significant increases in pericytes, endothelial cell, and neuronal contents. In the in vitro studies, PC-NVs significantly increased mouse cavernous endothelial cells tube formation, Schwann cell migration, and dorsal root ganglion and major pelvic ganglion neurite sprouting. Finally, Western blot analysis revealed that PC-NVs upregulated cell survival signaling (Akt and eNOS) and induced the expression of neurotrophic factors (brain-derived neurotrophic factor, neurotrophin-3, and nerve growth factor). Clinical Implications PC-NVs may be used as a strategy to treat erectile dysfunction after radical prostatectomy or in men with neurovascular diseases. Strengths & Limitations We evaluated the effect of PC-NVs in vitro and in a mouse nerve injury model, cavernous nerve injury. Additional studies are necessary to determine the detailed mechanisms of neurovascular improvement. Further study is needed to test whether PC-NVs are also effective when given weeks or months after nerve injury. Conclusion PC-NVs significantly improved erectile function by enhancing neurovascular regeneration. Local treatment with PC-NVs may represent a promising therapeutic strategy for the treatment of neurovascular diseases.
Introduction Diabetic erectile dysfunction is a disease mostly of vascular origin and men with diabetic erectile dysfunction respond poorly to oral phosphodiesterase-5 inhibitors. Hepatocyte growth factor (HGF) is a pleiotropic factor that plays an essential role in the regulation of cell proliferation, survival, and angiogenesis. Aim To determine the effectiveness of recombinant human (rh)-HGF in restoring erectile function in diabetic mice. Methods Four groups of mice were used: control non-diabetic mice and streptozotocin-induced diabetic mice receiving two successive intracavernous injections of phosphate buffered saline (days −3 and 0), a single intracavernous injection of rh-HGF (day 0), or two successive intracavernous injections of rh-HGF (days −3 and 0). We also examined the effect of rh-HGF in primary cultured mouse cavernous endothelial cells and in major pelvic ganglion culture in vitro, which was incubated under a normal-glucose (5 mmol/L) or a high-glucose (30 mmol/L) condition. Main Outcome Measures Two weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve and the penis was harvested for histologic studies. Results Repeated intracavernous injections of rh-HGF protein induced significant restoration of erectile function in diabetic mice (89–100% of control values), whereas a single intracavernous injection of rh-HGF protein elicited modest improvement. Rh-HGF significantly induced phosphorylation of its receptor c-Met, increased the content of endothelial cells and smooth muscle cells, and decreased the generation of reactive oxygen species (superoxide anion and peroxynitrite) and extravasation of oxidized low-density lipoprotein in diabetic mice. Under the high-glucose condition, rh-HGF protein also promoted tube formation in mouse cavernous endothelial cells and enhanced neurite sprouting in major pelvic ganglion culture in vitro. Conclusion The dual angiogenic and neurotrophic effects of HGF could open a new avenue through which diabetic erectile dysfunction can be treated.
Transforming growth factor-β1 (TGF-β1) has been identified as one of the most important fibrogenic cytokines associated with Peyronie's disease (PD). The mothers against decapentaplegic homolog 7 (SMAD7) is an inhibitory Smad protein that blocks TGF-β signaling pathway. The aim of this study was to examine the anti-fibrotic effect of the SMAD7 gene in primary fibroblasts derived from human PD plaques. PD fibroblasts were pretreated with the SMAD7 gene and then stimulated with TGF-β1. Treated fibroblasts were used for Western blotting, fluorescent immunocytochemistry, hydroxyproline determination, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays. Overexpression of the SMAD7 gene inhibited TGF-β1-induced phosphorylation and nuclear translocation of SMAD2 and SMAD3, transdifferentiation of fibroblasts into myofibroblasts, and quashed TGF-β1-induced production of extracellular matrix protein and hydroxyproline. Overexpression of the SMAD7 gene decreased the expression of cyclin D1 (a positive cell cycle regulator) and induced the expression of poly (ADP-ribose) polymerase 1, which is known to terminate Smad-mediated transcription, in PD fibroblasts. These findings suggest that the blocking of the TGF-β pathway by use of SMAD7 may be a promising therapeutic strategy for the treatment of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.