Nosocomial SBP has a poorer outcome than community-acquired SBP. The resistance to third-generation cephalosporins for gram-negative organisms, which are more common in nosocomial cases of SBP than in community-acquired cases of SBP, adversely affects the outcome of SBP in patients with liver cirrhosis.
It has been suggested that endoplasmic reticulum (ER) stress facilitates fibrotic remodeling. Therefore, modulation of ER stress may serve as one of the possible therapeutic approaches to renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed ER stress induced by chemical ER stress inducers [tunicamycin (TM) and thapsigargin (TG)] and also nonchemical inducers in tubular HK-2 cells. We further investigated the in vivo effects of AMPK on ER stress and renal fibrosis. Western blot analysis, immunofluorescence, small interfering (si)RNA experiments, and immunohistochemical staining were performed. Metformin (the best known clinical activator of AMPK) suppressed TM- or TG-induced ER stress, as shown by the inhibition of TM- or TG-induced upregulation of glucose-related protein (GRP)78 and phosphorylated eukaryotic initiation factor-2α through induction of heme oxygenase-1. Metformin inhibited TM- or TG-induced epithelial-mesenchymal transitions as well. Compound C (AMPK inhibitor) blocked the effect of metformin, and 5-aminoimidazole-4-carboxamide-1β riboside (another AMPK activator) exerted the same effects as metformin. Transfection with siRNA targeting AMPK blocked the effect of metformin. Consistent with the results of cell culture experiments, metformin reduced renal cortical GRP78 expression and increased heme oxygenase-1 expression in a mouse model of ER stress-induced acute kidney injury by TM. Activation of AMPK also suppressed ER stress by transforming growth factor-β, ANG II, aldosterone, and high glucose. Furthermore, metformin reduced GRP78 expression and renal fibrosis in a mouse model of unilateral ureteral obstruction. In conclusion, AMPK may serve as a promising therapeutic target through reducing ER stress and renal fibrosis.
Background: Endoplasmic reticulum (ER) stress has been implicated in inducing epithelial-mesenchymal transition (EMT). ER stress is also known to induce autophagy. However, it is unclear whether ER stress-induced autophagy contributes to EMT. We hypothesized that ER stress might induce EMT through autophagy via activation of c-Src kinase in tubular epithelial cells. Method: All experiments were performed using HK-2 cells. Protein expression was measured by Western blot analysis. Immunofluorescence and small interfering RNA (siRNA) experiments were performed. Results: Chemical ER stress inducers such as tunicamycin (TM, 0.2 μM) and thapsigargin (TG, 0.2 μM) induced EMT, as shown by upregulation of α-smooth muscle actin and downregulation of E-cadherin. ER stress inhibitors such as 4-PBA and salubrinal suppressed both TM- and TG-induced EMT. TM and TG also induced autophagy, as evidenced by upregulation of LC3-II and beclin-1, which were abolished by pretreatment with ER stress inhibitors. Transfection with siRNA targeting ER stress protein (IRE-1) blocked the TM- or TG-induced EMT and autophagy. Autophagy inhibitors such as 3-methyladenine and bafilomycin inhibited the TM- or TG-induced EMT. Transfection with siRNA targeting autophagy protein (beclin-1) also blocked the TM- or TG-induced EMT. Both TM and TG induced activation of c-Src kinase. Inhibitor of c-Src kinase (PP2) suppressed the TM- or TG-induced autophagy and EMT. Conclusion: ER stress by TM or TG induced EMT through autophagyvia activation of c-Src kinase in tubular epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.