SummarySystemic resistance is induced by necrotizing pathogenic microbes and non-pathogenic rhizobacteria and confers protection against a broad range of pathogens. Here we show that Arabidopsis GDSL LIPASE-LIKE 1 (GLIP1) plays an important role in plant immunity, eliciting both local and systemic resistance in plants. GLIP1 functions independently of salicylic acid but requires ethylene signaling. Enhancement of GLIP1 expression in plants increases resistance to pathogens including Alternaria brassicicola, Erwinia carotovora and Pseudomonas syringae, and limits their growth at the infection site. Furthermore, local treatment with GLIP1 proteins is sufficient for the activation of systemic resistance, inducing both resistance gene expression and pathogen resistance in systemic leaves. The PDF1.2-inducing activity accumulates in petiole exudates in a GLIP1-dependent manner and is fractionated in the size range of less than 10 kDa as determined by size exclusion chromatography. Our results demonstrate that GLIP1-elicited systemic resistance is dependent on ethylene signaling and provide evidence that GLIP1 may mediate the production of a systemic signaling molecule(s).
Summary
Archaea have inhabited the earth for a long period of time and are ubiquitously distributed in diverse environments. However, few studies have focused on the interactions of archaea with other organisms, including eukaryotes such as plants, since it is difficult to cultivate sufficient numbers of archaeal cells for analysis. In this study, we investigated the interaction between soil archaea and Arabidopsis thaliana. We demonstrate for the first time that soil archaea promote plant growth and trigger induced systemic resistance (ISR) against the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum SCC1 and biotrophic bacterium Pseudomonas syringae pv. tomato DC3000. Ammonia‐oxidizing archaeon Nitrosocosmicus oleophilus MY3 cells clearly colonized the root surface of Arabidopsis plants, and increased resistance against both pathogenic species via the salicylic acid‐independent signalling pathway. This mechanism of bacterial resistance resembles that underlying soil bacteria‐ and fungi‐mediated ISR signalling. Additionally, volatile emissions from N. oleophilus MY3 were identified as major archaeal determinants that elicit ISR. Our results lay a foundation for archaea–plant interactions as a new field of research.
First, we demonstrated that the presence of
Enterococcus
spp. is a driving force for insect metamorphosis. RNA sequencing and peptide production subsequently revealed that antimicrobial peptides targeted against microorganisms in the gut of
Galleria mellonella
(wax moth) did not kill
Enterobacteria
species, but did kill
Enterococcus
species, when the moth was at a certain stage of growth, and this promoted moth pupation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.