Vibrio vulnificus infection has attracted special interest because of its high mortality rate. However, the identification of its major pathogenic determinant still remains obscure. In this study, a cytolysin-negative mutant strain of V. vulnificus CVD707 was used to determine the role of phospholipase A (PLA) in the pathogenesis of this bacterial infection. The mutant strain caused the lysis of erythrocytes in vitro and elevated plasma hemoglobin during the infection in mice. Both the hemolytic and PLA activities were dependent on calcium. Inhibition of hemolysis by PLA inhibitors including tetracyclin and the PLA substrate phosphatidylcholine also supports the possibility of membranous PLA as a major hemolytic factor in the cytolysin-deficient mutant. To identify the role of PLA in the pathogenesis of V. vulnificus infection, the effects of tetracycline on bacteriainduced macrophage cytotoxicity and lethality were compared with those of penicillin, an antibiotic with no inhibitory effect on PLA. Both the macrophage cytotoxicity and the lethality of V. vulnificus CVD707 to mice were significantly attenuated by tetracycline, but not by penicillin. However, bacterial counts in culture medium and mouse blood revealed that penicillin was more effective than tetracycline in killing bacteria under our experimental conditions. These results indicate that PLA activity is important in V. vulnificus-induced cytotoxicity and lethality, suggesting a crucial role for PLA in the pathogenesis of V. vulnificus infection.
Wide FOV(Field-of-View) is required to contain much more visual information in a single image. The wideFOV imaging system has many industrial applications such as surveillance, security, tele-conference, and mobile robots. In order to obtain a wide FOV panorama image, an imaging system with hyperbolic cylinder mirror is proposed in this paper. Because the horizontal FOV is more important than the vertical FOV in general, a hyperbolic cylinder mirror is designed in this paper, that has a hyperbolic curve in the horizontal surface and is the same as a planar mirror in the vertical axis. Imaging model of the proposed imaging system is presented by ray tracing method and the hyperbolic cylinder mirror is implemented. The imaging performance of wide FOV is verified by experiments in this paper. This imaging system is cost-effective and is possible to acquire a wide panorama image having 210 degree horizontal FOV in real-time without an extra image processing.
Distance measurement is essential for autonomous mobile robot. In this paper, development of a structured-light image based ranging system is addressed. In order to obtain omnidirectional distance data, the ranging sensor units are deployed in ring structure on a mobile robot. The omnidirectional distance information to surrounding objects is useful for making a local distance map and the self-localization of a mobile robot by matching the local map with a given global map. An efficient image processing algorithm, i.e., integration of difference images with structured-light modulation is proposed, which results in robust extraction of the structured-light pixels from a camera image against environmental ambient light. Experiments for the structured-light pixel extraction, distance computation, matching and localization are conducted to verify the performance of the proposed ranging system.
An ERS(Embedded Rail System) has large effect on the load distribution because of its continuous rail support. Therefore, stress level of the track components is lower than that of other system. Though the ERS has various advantages, the application example in a domestic railway is rarely applied and the studies for the application of high-speed service lines are insufficient. In this paper, the vertical stiffness is derived from laboratory test and the optimized cross-section is also derived from the analytical analysis as a basic study for application of ERS on the high-speed service lines.
Abstract:In this study, an embedded ranging system based on a laser structured light image is developed. The distance measurement by the structured light image processing has efficient computation because the burdensome correspondence problem is avoidable. In order to achieve robustness against environmental illumination noise and real-time laser structured light image processing, a bandpass optical filter is adopted in this study. The proposed ranging system has an embedded image processor performing the whole image processing and distance measurement, and so reduces the computational burden in the main control system. A system calibration algorithm is presented to compensate for the lens distortion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.