Bacterial cellulose nanofiber (BCNF) with high thermal stability produced by an ecofriendly process has emerged as a promising solution to realize safe and sustainable materials in the large-scale battery. However, an understanding of the actual thermal behavior of the BCNF in the full-cell battery has been lacking, and the yield is still limited for commercialization. Here, we report the entire process of BCNF production and battery manufacture. We systematically constructed a strain with the highest yield (31.5%) by increasing metabolic flux and improved safety by introducing a Lewis base to overcome thermochemical degradation in the battery. This report will open ways of exploiting the BCNF as a “single-layer” separator, a good alternative to the existing chemical-derived one, and thus can greatly contribute to solving the environmental and safety issues.
A series of flavonoids (1-14) was isolated from the roots of Sophora flavescens. We evaluated their ability to inhibit both microbial growth and sortase A, an enzyme that plays a key role in cell wall protein anchoring and virulence in Staphylococcus aureus. Most prenylated flavonoids (7-13) displayed potent inhibitory activity against gram-positive and gram-negative bacteria except E. coli, with minimum inhibitory concentrations values ranging from 4.40 to 27.7 μM, and weak or no activity against fungal strains tested. Kurarinol (6) was a potent inhibitor of sortase A, with an IC(50) value of 107.7 ± 6.6 μM. A preliminary structure-activity relationship, including essential structural requirements, is described.
Magnaporthe grisea is a fungal pathogen of rice that forms appressoria that penetrate the outer cuticle of the rice plant. Data from recent studies indicate that M. grisea isocitrate lyase (ICL), a key enzyme in the glyoxylate cycle, is highly expressed during appressorium-mediated plant infection. Bromophenols isolated from the red alga Odonthalia corymbifera exhibited potent ICL inhibitory activity and blocked appressoria formation by M. grisea in a concentration-dependent manner. In addition, these compounds protected the rice plants from infection by M. grisea. Rice plants infected with wild-type M. grisea Guy 11 exhibited significantly lower disease severity with bromophenol treatment than without, and the treatment effect was comparable to the behavior of the Deltaicl knockout mutant I-10. The protective effect of bromophenols and their strong inhibition of appressorium formation on rice plants suggest that ICL inhibitors may be promising candidates for crop protection, particularly to protect rice plants against M. grisea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.