It is well recognized that structures designed by current codes undergo large inelastic deformations during major earthquakes. However, lateral force distributions given in the seismic design codes are typically based on results of elastic-response studies. In this paper, lateral force distributions used in the current seismic codes are reviewed and the results obtained from nonlinear dynamic analyses of a number of example structures are presented and discussed. It is concluded that code lateral force distributions do not represent the maximum force distributions that may be induced during nonlinear response, which may lead to inaccurate predictions of deformation and force demands, causing structures to behave in a rather unpredictable and undesirable manner. A new lateral force distribution based on study of inelastic behavior is developed by using relative distribution of maximum story shears of the example structures subjected to a wide variety of earthquake ground motions. The results show that the suggested lateral force distribution, especially for the types of framed structures investigated in this study, is more rational and gives a much better prediction of inelastic seismic demands at global as well as at element levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.