Recently, the concentration of 〖CO〗_2, one of the major air pollutants for greenhouse effect, is increasing due to the massive use of fossil fuels. Thus, research about gas sensors for monitoring 〖CO〗_2 gas have performed, and conventional methods have the challenge of requiring complex structures. Thus, research about gas sensors using nanomaterials has been conducted, and graphene-based gas sensors have been actively researched since its extraordinary conductivity. However, there are challenges that the gas absorption site is limited in chemically unstable site. In this study, ZnO/graphene heterostructure to improve the gas absorption area with high conductivity through ZnO on graphene was presented. Each layer acted as a gas adsorption and a carrier conducting layer respectively, and the sensitivity by the thickness of ZnO and the effect of the annealing temperature were evaluated. This work exhibited a sensitivity of 78% at room temperature, and repeatability and selectivity were also studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.