A straightforward electrochemical dissolution-precipitation approach has been developed to synthesize nanostructured β-Ni(OH)2 powders (particle size 10-100 nm, specific surface area ∼100 m(2) g(-1)) from Ni metal anodes. The approach differs from existing electrochemical synthesis methods in that it predominantly results in bulk precipitation of nanoparticles, without significant film growth on either of the electrodes. Heat treatment of the as-synthesized β-Ni(OH)2 afforded NiO with mostly preserved nanostructure and very high specific surface area (≤100 m(2) g(-1), depending on calcination temperature). The as-synthesized β-Ni(OH)2 was found to be an excellent catalyst for the oxygen evolution reaction (OER) in the technologically important water electrolysis process, apparently contradicting recent reports that the α polymorph is required for such high activity. With catalyst loadings <0.1 mg cm(-2), OER current densities of 10 mA cm(-2) were sustained at overpotentials as low as 340 mV, with Tafel slopes of only ∼38 mV/decade. The catalyst was highly stable in alkaline media over the course of electrolysis experiments lasting for several hours. This performance surpasses that of many previously reported earth-abundant OER catalysts and is comparable to that obtained with state-of-the-art RuO2 and IrO2 catalysts.
Several earth-abundant transition-metal oxides (e.g. Fe2O3, CoO, and Cu2O) possessing suitable band gaps for solar water splitting exist, but energy level alignment is often sub-optimal, i.e. the conduction and valence bands do not straddle the water oxidation and reduction potentials. Here, using a nanocrystalline-TiO2-based photoelectrochemical cell as a model system, we investigate the effect of tuning the semiconductor energy levels by adding Li+ ions to the electrolyte. The effect of LiClO4 addition on band edges, interfacial recombination resistance, electron diffusion length, and charge-separation efficiency were quantified by impedance spectroscopy and analysis of incident photon-to-current efficiency spectra. We find that the TiO2 band edges are shifted toward positive potentials by the addition of Li+, and that this increases the apparent electron diffusion length without affecting the charge-separation efficiency, most likely due to a change in the driving force for O2 reduction. These results should prove useful in the modeling and optimization of solar water splitting cells employing metal oxide photoelectrodes.
Ternary metal vanadates have recently emerged as promising photoelectrode materials for sunlight-driven water splitting. Here, we show that highly active nanostructured BiVO4films can be deposited onto fluorine-doped tin oxide (FTO) substrates by a facile sequential dipping method known as successive ionic layer adsorption and reaction (SILAR). After annealing and deposition of a cobalt phosphate (Co-Pi) co-catalyst, the photoelectrodes produce anodic photocurrents (under 100 mW cm-2broadband illumination, 1.23 Vvs. RHE) in pH 7 phosphate buffer that are on par with the highest reported in the literature for similar materials. To gain insight into the reason for the good performance of the deposited films, and to identify factors limiting their performance, incident photon-to-electron conversion efficiency spectra have been analyzed using a simple diffusion–reaction model to quantify the electron diffusion length (Ln; the average distance travelled before recombination) and charge separation efficiency (ηsep) in the films. The results indicate thatηsepapproaches unity at sufficiently positive applied potential but the photocurrent is limited by significant charge collection losses due to a shortLnrelative to the film thickness. The Co-Pi catalyst is found to improveηsepat low potentials as well as increaseLnat all potentials studied. These findings help to clarify the role of the Co-Pi co-catalyst and show that there could be room for improvement of BiVO4photoanodes deposited by SILAR ifLncan be increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.