Three-dimensional biocompatible and biodegradable scaffolds play important roles in tissue engineering. In this study, fibrous mats composed of electrospun poly(epsilon-caprolactone) (PCL)/small intestine submucosa (SIS) tubes were fabricated with a high degree of longitudinal alignment as a conduit for peripheral nerves. Fourier transform infrared analyses of electrospun PCL/SIS mats with various amounts of SIS showed that the SIS was well embedded within the PCL matrix. The diameter of the PCL/SIS fibers with the 3 wt % of SIS in the PCL solution decreased 40% relative to that of pure PCL fibers due to increased electrical conductivity and decreased surface tension. PCL/SIS (3 wt %) electrospun mats exhibited various synergistic effects, including stronger mechanical properties (Young's modulus = more than 80%) and enhanced hydrophilicity (water contact angle at 30 min = 54 degrees ) relative to pure PCL (water contact angle at 30 min = 142 degrees ). Cell attachment and proliferation experiments demonstrated that the interactions between nerve cells (PC-12) and the PCL/SIS conduits were more favorable than those between PC-12 cells and a pure PCL conduit. This study contributes to the understanding of the effects of including SIS in electrospun composite mats. The ability to fabricate highly aligned tubes of PCL/SIS with appropriate mechanical properties and cellular interactions shows great potential for the design of nerve regeneration conduits.
Natural biomaterials were used to improve the biocompatibility of synthetic biopolymers. PCL was electrospun with natural biopolymers, silk fibroin, and small intestine submucosa. Due to increased electrical conductivity, the diameter of the composite fibers highly depended on the amount of SIS in the polymer solution. PCL/SF/SIS electrospun composites exhibited various synergistic effects, including enhanced mechanical properties and incredibly improved hydrophilicity compared to those of pure PCL and PCL/SF fibers. An initial cell attachment test demonstrated that the interactions between PC‐12 nerve cells and the PCL/SF/SIS composites were more favorable than those between PC‐12 cells and a PCL/SF composite.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.