A bright combination: a new type of donor-acceptor dyad, carbazolylaryl-substituted ortho-carboranes, which are conveniently prepared from the corresponding acetylenes and decaborane pathways, showed unique excited-state behavior associated with electron transfer unlike the meta- and para-counterparts.
Carborane-based host materials were prepared to fabricate deep blue phosphorescence organic light-emitting diodes (PHOLEDs), which constituted three distinctive geometrical structures stemming from the corresponding three different isomeric forms of carboranes, namely, ortho-, meta-, and para-carboranes. These materials consist of two carbazolyl phenyl (CzPh) groups as photoactive units on each side of the carborane carbons to be bis[4-(N-carbazolyl)phenyl]carboranes, o-Cb, m-Cb, and p-Cb. To elaborate on the role of the carboranes, comparative analogous benzene series (o-Bz, m-Bz, and p-Bz) were prepared, and their photophysical properties were compared to show that advantageous photophysical properties were originated from the carborane structures: high triplet energy. Unlike m-Bz and p-Bz, carborane-based m-Cb and p-Cb showed an unconjugated nature between two CzPh units, which is essential for the blue phosphorescent materials. Also, the carborane hosts showed high glass transition temperatures (T(g)) of 132 and 164 °C for m-Cb and p-Cb, respectively. Albeit p-Cb exhibited slightly lower hole mobility when compared to p-Bz, it still lies at the high end hole mobility with a value of 1.1 × 10(-3) cm(2)/(V s) at an electric field of 5 × 10(5) V/cm. Density functional theory (DFT) calculations revealed that triplet wave functions were effectively confined and mostly located at either side of the carbazolyl units for m-Cb and p-Cb. Low-temperature PL spectra indeed provided unequivocal data with higher triplet energy (T(1)) of 3.1 eV for both m-Cb and p-Cb. p-Cb was successfully used as a host in deep blue PHOLEDs to provide a high external quantum efficiency of 15.3% and commission internationale de l'elcairage (CIE) coordinates of (0.15, 0.24).
o-Carborane-based donor-acceptor dyads comprising an o-carboranyl phenyl unit combined with N-carbazole (1) or 4-phenyl-N-carbazole (2) were prepared, and their dyad characters were confirmed by steady-state photochemistry and photodynamic experiments as well as electrochemical studies. The absorption and electrochemical properties of the dyads were essentially the sum of those of the carbazole and o-carboranyl phenyl units; this indicates negligible interaction between the carbazole and o-carborane units in the ground state. However, the emission spectra of 1 and 2 indicated that carbazole fluorescence was effectively quenched and a new charge-transfer (CT) emission was observed in solvents, varying from hexane to acetonitrile, which exhibited large Stoke shifts. The CT emission properties of o-carborane-based dyads were further analyzed by using Lippert-Mataga plots to show that unit charge separation occurred to form a charge-separated species in the excited state, namely, 1⋅2. This excited-state species was confirmed by nanosecond transient absorption spectra and spectroelectrochemical measurements; the photoexcitation of carbazole generated the CT state in which a radical cation and anion were formed at the carbazole and o-carborane units, respectively, within a few nanoseconds. DFT calculations corroborated the presence of this CT species and showed localized populations of the highest singly occupied molecular orbital on 2 in the reduced anionic state. As a result, molecular assemblies formed by linking the carbazole group with the o-carborane cage through a phenylene or multi-phenylene spacer revealed that the photoinduced electron-transfer process occurred intramolecularly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.