The site-selective and chemoselective functionalization of alcohols in complex polyols remains a formidable synthetic challenge. Whereas significant advancements have been made in selective derivatization at the oxygen center, chemoselective oxidation to the corresponding carbonyls is less developed. In cyclic systems, whereas the selective oxidation of axial alcohols is well known, a complementary equatorial selective process has not yet been reported. Herein we report the utility of nitrogen-ligated (bis)cationic λ 3 -iodanes (N-HVIs) for alcohol oxidation and their unprecedented levels of selectivity for the oxidation of equatorial over axial alcohols. The conditions are mild, and the simple pyridine-ligated reagent (Py-HVI) is readily synthesized from commercial PhI(OAc) 2 and can be either isolated or generated in situ. Conformational selectivity is demonstrated in both flexible 1,2-substituted cyclohexanols and rigid polyol scaffolds, providing chemists with a novel tool for chemoselective oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.