Increasing demand in wind energy has resulted in increasingly clustered wind farms, 1 and raised the interest in wake research dramatically in the last couple of years. To this end, 2 the present work employs an experimental approach with scaled three-bladed wind-turbine models
Abstract. The Weather, Research and Forecasting (WRF) model includes a multitude of physics parameterizations to account for atmospheric dynamics and interactions such as turbulent fluxes within the planetary boundary layer (PBL), long and short wave radiation, hydrometeor representation in microphysics, cloud ensemble representation in cumulus, amongst others. A sensitivity analysis is conducted in order to identify the optimal WRF-physics set-up and impact of temporal resolution of re-analysis dataset for the event of sudden changes in wind direction that can become challenging for reliable wind energy operations. In this context, Storm Ciara has been selected as a case study to investigate the influence of a broad combination of different interacting physics-schemes on quantities of interest that are relevant for energy yield assessment. Of particular relevance to fast transient weather events, two different temporal resolutions (1-hourly and 3-hourly) of the lateral boundary condition's re-analysis dataset, ERA5, are considered. Physics parameterizations considered in this study include: two PBL schemes (MYNN2.5 and scale-aware Shin Hong PBL), four cumulus schemes (Kain-Fritsch, Grell-Devenyi, and scale-aware Grell-Freitas and multi-scale Kain-Fritsch,) and three microphysics schemes (WSM5, Thompson and Morrison) coupled with two geospatial configurations for WRF simulation domains. The resulting WRF predictions are assessed by comparison to observational RADAR reflectivity data on precipitation. In addition, SCADA data on wind direction and wind speed from an offshore wind farm located in the Belgian North Sea is considered to assess modeling capabilities for local wind behavior at farm level. For precipitation, results are shown to be very sensitive to model setup, but no clear trends can be observed. For wind-related variables on the other hand, results show a definite improvement in accuracy when both scale-aware cumulus and PBL parameterizations are used in combination with 1-hourly temporal resolution reanalysis data and extended domain sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.