Serious concerns about research quality have catalysed a number of reform initiatives intended to improve transparency and reproducibility and thus facilitate self-correction, increase efficiency and enhance research credibility. Meta-research has evaluated the merits of some individual initiatives; however, this may not capture broader trends reflecting the cumulative contribution of these efforts. In this study, we manually examined a random sample of 250 articles in order to estimate the prevalence of a range of transparency and reproducibility-related indicators in the social sciences literature published between 2014 and 2017. Few articles indicated availability of materials (16/151, 11% [95% confidence interval, 7% to 16%]), protocols (0/156, 0% [0% to 1%]), raw data (11/156, 7% [2% to 13%]) or analysis scripts (2/156, 1% [0% to 3%]), and no studies were pre-registered (0/156, 0% [0% to 1%]). Some articles explicitly disclosed funding sources (or lack of; 74/236, 31% [25% to 37%]) and some declared no conflicts of interest (36/236, 15% [11% to 20%]). Replication studies were rare (2/156, 1% [0% to 3%]). Few studies were included in evidence synthesis via systematic review (17/151, 11% [7% to 16%]) or meta-analysis (2/151, 1% [0% to 3%]). Less than half the articles were publicly available (101/250, 40% [34% to 47%]). Minimal adoption of transparency and reproducibility-related research practices could be undermining the credibility and efficiency of social science research. The present study establishes a baseline that can be revisited in the future to assess progress.
Serious concerns about research quality have catalyzed a number of reform initiatives intended to improve transparency and reproducibility and thus facilitate self-correction, increase efficiency, and enhance research credibility. Meta-research has evaluated the merits of some individual initiatives; however, this may not capture broader trends reflecting the cumulative contribution of these efforts. In this study, we manually examined a random sample of 250 articles in order to estimate the prevalence of a range of transparency and reproducibility-related indicators in the social sciences literature published between 2014-2017. Few articles indicated availability of materials (16/151, 11% [95% confidence interval, 7% to 16%]), protocols (0/156, 0% [0% to 1%]), raw data (11/156, 7% [2% to 13%]), or analysis scripts (2/156, 1% [0% to 3%]), and no studies were pre-registered (0/156, 0% [0% to 1%]). Some articles explicitly disclosed funding sources (or lack of; 74/236, 31% [25% to 37%]) and some declared no conflicts of interest (36/236, 15% [11% to 20%]). Replication studies were rare (2/156, 1% [0% to 3%]). Few studies were included in evidence synthesis via systematic review (17/151, 11% [7% to 16%]) or meta-analysis (2/151, 1% [0% to 3%]). Less than half the articles were publicly available (101/250, 40% [34% to 47%]). Minimal adoption of transparency and reproducibility-related research practices could be undermining the credibility and efficiency of social science research. The present study establishes a baseline that can be revisited in the future to assess progress.
Abstract. The open science movement is rapidly changing the scientific landscape. Because exact definitions are often lacking and reforms are constantly evolving, accessible guides to open science are needed. This paper provides an introduction to open science and related reforms in the form of an annotated reading list of seven peer-reviewed articles, following the format of Etz, Gronau, Dablander, Edelsbrunner, and Baribault (2018) . Written for researchers and students – particularly in psychological science – it highlights and introduces seven topics: understanding open science; open access; open data, materials, and code; reproducible analyses; preregistration and registered reports; replication research; and teaching open science. For each topic, we provide a detailed summary of one particularly informative and actionable article and suggest several further resources. Supporting a broader understanding of open science issues, this overview should enable researchers to engage with, improve, and implement current open, transparent, reproducible, replicable, and cumulative scientific practices.
While some scientists study insects, molecules, brains, or clouds, other scientists study science itself. Meta-research, or research-on-research, is a burgeoning discipline that investigates efficiency, quality, and bias in the scientific ecosystem, topics that have become especially relevant amid widespread concerns about the credibility of the scientific literature. Meta-research may help calibrate the scientific ecosystem toward higher standards by providing empirical evidence that informs the iterative generation and refinement of reform initiatives. We introduce a translational framework that involves ( a) identifying problems, ( b) investigating problems, ( c) developing solutions, and ( d) evaluating solutions. In each of these areas, we review key meta-research endeavors and discuss several examples of prior and ongoing work. The scientific ecosystem is perpetually evolving; the discipline of meta-research presents an opportunity to use empirical evidence to guide its development and maximize its potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.