There is a growing movement to encourage reproducibility and transparency practices in the scientific community, including public access to raw data and protocols, the conduct of replication studies, systematic integration of evidence in systematic reviews, and the documentation of funding and potential conflicts of interest. In this survey, we assessed the current status of reproducibility and transparency addressing these indicators in a random sample of 441 biomedical journal articles published in 2000–2014. Only one study provided a full protocol and none made all raw data directly available. Replication studies were rare (n = 4), and only 16 studies had their data included in a subsequent systematic review or meta-analysis. The majority of studies did not mention anything about funding or conflicts of interest. The percentage of articles with no statement of conflict decreased substantially between 2000 and 2014 (94.4% in 2000 to 34.6% in 2014); the percentage of articles reporting statements of conflicts (0% in 2000, 15.4% in 2014) or no conflicts (5.6% in 2000, 50.0% in 2014) increased. Articles published in journals in the clinical medicine category versus other fields were almost twice as likely to not include any information on funding and to have private funding. This study provides baseline data to compare future progress in improving these indicators in the scientific literature.
IMPORTANCE The use and misuse of P values has generated extensive debates. OBJECTIVE To evaluate in large scale the P values reported in the abstracts and full text of biomedical research articles over the past 25 years and determine how frequently statistical information is presented in ways other than P values. DESIGN Automated text-mining analysis was performed to extract data on P values reported in 12 821 790 MEDLINE abstracts and in 843 884 abstracts and full-text articles in PubMed Central (PMC) from 1990 to 2015. Reporting of P values in 151 English-language core clinical journals and specific article types as classified by PubMed also was evaluated. A random sample of 1000 MEDLINE abstracts was manually assessed for reporting of P values and other types of statistical information; of those abstracts reporting empirical data, 100 articles were also assessed in full text. MAIN OUTCOMES AND MEASURES P values reported. RESULTS Text mining identified 4 572 043 P values in 1 608 736 MEDLINE abstracts and 3 438 299 P values in 385 393 PMC full-text articles. Reporting of P values in abstracts increased from 7.3% in 1990 to 15.6% in 2014. In 2014, P values were reported in 33.0% of abstracts from the 151 core clinical journals (n = 29 725 abstracts), 35.7% of meta-analyses (n = 5620), 38.9% of clinical trials (n = 4624), 54.8% of randomized controlled trials (n = 13 544), and 2.4% of reviews (n = 71 529). The distribution of reported P values in abstracts and in full text showed strong clustering at P values of .05 and of .001 or smaller. Over time, the "best" (most statistically significant) reported P values were modestly smaller and the "worst" (least statistically significant) reported P values became modestly less significant. Among the MEDLINE abstracts and PMC full-text articles with P values, 96% reported at least 1 P value of .05 or lower, with the proportion remaining steady over time in PMC full-text articles. In 1000 abstracts that were manually reviewed, 796 were from articles reporting empirical data; P values were reported in 15.7% (125/796 [95% CI, 13.2%-18.4%]) of abstracts, confidence intervals in 2.3% (18/796 [95% CI, 1.3%-3.6%]), Bayes factors in 0% (0/796 [95% CI, 0%-0.5%]), effect sizes in 13.9% (111/796 [95% CI, 11.6%-16.5%]), other information that could lead to estimation of P values in 12.4% (99/796 [95% CI, 10.2%-14.9%]), and qualitative statements about significance in 18.1% (181/1000 [95% CI, 15.8%-20.6%]); only 1.8% (14/796 [95% CI, 1.0%-2.9%]) of abstracts reported at least 1 effect size and at least 1 confidence interval. Among 99 manually extracted full-text articles with data, 55 reported P values, 4 presented confidence intervals for all reported effect sizes, none used Bayesian methods, 1 used false-discovery rates, 3 used sample size/power calculations, and 5 specified the primary outcome. CONCLUSIONS AND RELEVANCE In this analysis of P values reported in MEDLINE abstracts and in PMC articles from 1990-2015, more MEDLINE abstracts and articles reported P values over time, alm...
Currently, there is a growing interest in ensuring the transparency and reproducibility of the published scientific literature. According to a previous evaluation of 441 biomedical journals articles published in 2000–2014, the biomedical literature largely lacked transparency in important dimensions. Here, we surveyed a random sample of 149 biomedical articles published between 2015 and 2017 and determined the proportion reporting sources of public and/or private funding and conflicts of interests, sharing protocols and raw data, and undergoing rigorous independent replication and reproducibility checks. We also investigated what can be learned about reproducibility and transparency indicators from open access data provided on PubMed. The majority of the 149 studies disclosed some information regarding funding (103, 69.1% [95% confidence interval, 61.0% to 76.3%]) or conflicts of interest (97, 65.1% [56.8% to 72.6%]). Among the 104 articles with empirical data in which protocols or data sharing would be pertinent, 19 (18.3% [11.6% to 27.3%]) discussed publicly available data; only one (1.0% [0.1% to 6.0%]) included a link to a full study protocol. Among the 97 articles in which replication in studies with different data would be pertinent, there were five replication efforts (5.2% [1.9% to 12.2%]). Although clinical trial identification numbers and funding details were often provided on PubMed, only two of the articles without a full text article in PubMed Central that discussed publicly available data at the full text level also contained information related to data sharing on PubMed; none had a conflicts of interest statement on PubMed. Our evaluation suggests that although there have been improvements over the last few years in certain key indicators of reproducibility and transparency, opportunities exist to improve reproducible research practices across the biomedical literature and to make features related to reproducibility more readily visible in PubMed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.