The balance between bone resorption and bone formation is vital for maintenance and regeneration of alveolar bone and supporting structures around teeth and dental implants. Tissue regeneration in the oral cavity is regulated by multiple cell types, signaling mechanisms, and matrix interactions. A goal for periodontal tissue engineering/regenerative medicine is to restore oral soft and hard tissues through cell, scaffold, and/or signaling approaches to functional and aesthetic oral tissues. Bony defects in the oral cavity can vary significantly, ranging from smaller intrabony lesions resulting from periodontal or peri-implant diseases to large osseous defects that extend through the jaws as a result of trauma, tumor resection, or congenital defects. The disparity in size and location of these alveolar defects is compounded further by patient-specific and environmental factors that contribute to the challenges in periodontal regeneration, peri-implant tissue regeneration, and alveolar ridge reconstruction. Efforts have been made over the last few decades to produce reliable and predictable methods to stimulate bone regeneration in alveolar bone defects. Tissue engineering/regenerative medicine provide new avenues to enhance tissue regeneration by introducing bioactive models or constructing patient-specific substitutes. This review presents an overview of therapies (e.g., protein, gene, and cell based) and biomaterials (e.g., resorbable, nonresorbable, and 3-dimensionally printed) used for alveolar bone engineering around teeth and implants and for implant site development, with emphasis on most recent findings and future directions.
The periodontium, consisting of gingiva, periodontal ligament, cementum, and alveolar bone, is a hierarchically organized tissue whose primary role is to provide physical and mechanical support to the teeth. Severe cases of periodontitis, an inflammatory condition initiated by an oral bacterial biofilm, can lead to significant destruction of soft and hard tissues of the periodontium and result in compromised dental function and aesthetics. Although current treatment approaches can limit the progression of the disease by controlling the inflammatory aspect, complete periodontal regeneration cannot be predictably achieved. Various tissue engineering approaches are investigated for their ability to control the critical temporo-spatial wound healing events that are essential for achieving periodontal regeneration. This paper reviews recent progress in the field of periodontal tissue engineering with an emphasis on advanced 3D multiphasic tissue engineering constructs (TECs) and provides a critical analysis of their regenerative potential and limitations. The review also elaborates on the future of periodontal tissue engineering, including scaffold customization for individual periodontal defects, TEC's functionalization strategies for imparting enhanced bioactivity, periodontal ligament fiber guidance, and the utilization of chair-side regenerative solutions that can facilitate clinical translation.
To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.