Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
IMPORTANCEOveractivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.ObjectiveTo determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.DESIGN, SETTING, AND PARTICIPANTSIn an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).INTERVENTIONSPatients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.MAIN OUTCOMES AND MEASURESThe primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.RESULTSOn February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).CONCLUSIONS AND RELEVANCEIn this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.TRIAL REGISTRATIONClinicalTrials.gov Identifier: NCT02735707
BackgroundAtrial fibrillation (AF) occurs in approximately one in three patients after cardiac surgery, and is associated with increased short-term and long-term mortality, intensive care unit (ICU) and hospital stay, and increased cost of care. In an attempt to reduce AF incidence in these patients, serum potassium (K+) levels are commonly maintained at the high end of normal (4.5–5.5 mEq/L). However, such potassium supplementation is without proven benefit, and is not without negative consequences. It carries clinical risk, negatively impacts patient experience and is both time-consuming and costly. This protocol describes a randomised controlled pilot trial to assess the feasibility of a proposed randomised non-inferiority trial to investigate the impact of maintaining serum potassium ≥ 3.6 mEq/L vs ≥ 4.5 mEq/L on the incidence of new-onset atrial fibrillation in the first 120 hours after isolated elective coronary artery bypass grafting.MethodsDesign: this is a randomized feasibility trial as a pilot for a randomized non-inferiority trial. Participants: are 160 patients undergoing isolated coronary artery bypass grafting at two centres. Allocation: patients will be randomized (1:1) to protocols aiming to maintain serum potassium at either ≥ 3.6 mEq/L (“relaxed control”) or ≥ 4.5 mEq/L (“tight control”). Primary analytic aim: was to assess the feasibility and acceptability of planning and delivering the intervention and trial methods to inform a full-scale non-inferiority trial. Outcome: the primary indicative efficacy outcome measures being field-tested are feasibility of participant recruitment and randomization, maintaining a protocol violation rate < 10%, and retaining 90% patient follow up 28 days after surgery. The primary clinical outcome measure of the future full “Tight K Study” will be incidence of AF after cardiac surgery.DiscussionThe Tight K Pilot will assess the feasibility of conducting the full trial, which is intended to confirm or refute the efficacy of current potassium management in preventing AF after cardiac surgery.Trial registrationClinicalTrials.gov, NCT03195647. Registered on 23 May 2017. Last updated 19June 2017.Electronic supplementary materialThe online version of this article (doi:10.1186/s13063-017-2349-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.