We present experimental results showing a laser-accelerated proton beam maximum energy cutoff of 67.5 MeV, with more than 5 × 106 protons per MeV at that energy, using flat-top hollow microcone targets. This result was obtained with a modest laser energy of ∼80 J, on the high-contrast Trident laser at Los Alamos National Laboratory. From 2D particle-in-cell simulations, we attribute the source of these enhanced proton energies to direct laser-light-pressure acceleration of electrons along the inner cone wall surface, where the laser light wave accelerates electrons just outside the surface critical density, in a potential well created by a shift of the electrostatic field maximum with respect to that of the magnetic field maximum. Simulations show that for an increasing acceleration length, the continuous loading of electrons into the accelerating phase of the laser field yields an increase in high-energy electrons.
This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) microm full width at half maximum 50 cm behind the source. It decouples the relativistic laser-proton acceleration from the beam transport, paving the way to optimize both separately. The collimation and the subsequent energy selection obtained are perfectly applicable for upcoming high-energy, high-repetition rate laser systems.
We have analyzed the coupling of ultraintense lasers (at ∼2×10{19} W/cm{2}) with solid foils of limited transverse extent (∼10 s of μm) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.
Although spirometric results indicate normal lung function, the mean VDI in patients (5.1) found in this study is well above the VDI in healthy subjects (1.6) reported in the literature. A single CPT session induces disparate changes in the distribution and extent of ventilation defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.