Plasma cells (PCs), the terminal effectors of humoral immunity, are short-lived unless supported by niche environments in which they may persist for years. No model system has linked B cell activation with niche function to allow the in vitro generation of long-lived PCs. Thus, the full trajectory of B cell terminal differentiation has yet to be investigated in vitro. In this article, we describe a robust model for the generation of polyclonal long-lived human PCs from peripheral blood B cells. After a proliferative plasmablast phase, PCs persist in the absence of cell division, with viability limited only by elective culture termination. Conservative predictions for PC life expectancy are 300 d, but with the potential for significantly longer life spans for some cells. These long-lived PCs are preferentially derived from memory B cells, and acquire a CD138high phenotype analogous to that of human bone marrow PCs. Analysis of gene expression across the system defines clusters of genes with related dynamics and linked functional characteristics. Importantly, genes in these differentiation clusters demonstrate a similar overall pattern of expression for in vitro and ex vivo PCs. In vitro PCs are fully reprogrammed to a secretory state and are adapted to their secretory load, maintaining IgG secretion of 120 pg/cell/day in the absence of XBP1 mRNA splicing. By establishing a set of conditions sufficient to allow the development and persistence of mature human PCs in vitro, to our knowledge, we provide the first platform with which to sequentially explore and manipulate each stage of human PC differentiation.
The 11 Rap proteins of Bacillus subtilis comprise a conserved family of tetratricopeptide (TPR)-containing regulatory proteins. Their activity is inhibited by specific Phr pentapeptides produced from the product of phr genes through an export-import maturation process. We found that one of the proteins, namely RapF, is
A diverse spectrum of unique peptide-MHC class I complexes guides CD8 T cell responses toward viral or stress-induced Ags. Multiple components are required to process Ag and facilitate peptide loading in the endoplasmic reticulum. IFN-γ, a potent proinflammatory cytokine, markedly up-regulates transcription of genes involved in MHC class I assembly. Physiological mechanisms which counteract this response are poorly defined. We demonstrate that promoters of functionally linked genes on this pathway contain conserved regulatory elements that allow antagonistic regulation by IFN-γ and the transcription factor B lymphocyte-induced maturation protein-1 (also known as PR domain-containing 1, with ZNF domain (PRDM1)). Repression of ERAP1, TAPASIN, MECL1, and LMP7 by PRDM1 results in failure to up-regulate surface MHC class I in response to IFN-γ in human cell lines. Using the sea urchin prdm1 ortholog, we demonstrate that the capacity of PRDM1 to repress the IFN response of such promoters is evolutionarily ancient and that dependence on the precise IFN regulatory factor element sequence is highly conserved. This indicates that the functional interaction between PRDM1 and IFN-regulated pathways antedates the evolution of the adaptive immune system and the MHC, and identifies a unique role for PRDM1 as a key regulator of Ag presentation by MHC class I.
Plasma cells (PCs) as effectors of humoral immunity produce Igs to match pathogenic insult. Emerging data suggest more diverse roles exist for PCs as regulators of immune and inflammatory responses via secretion of factors other than Igs. The extent to which such responses are preprogrammed in B-lineage cells or can be induced in PCs by the microenvironment is unknown. In this study, we dissect the impact of IFNs on the regulatory networks of human PCs. We show that core PC programs are unaffected, whereas PCs respond to IFNs with distinctive transcriptional responses. The IFN-stimulated gene 15 (ISG15) system emerges as a major transcriptional output induced in a sustained fashion by IFN-α in PCs and linked both to intracellular conjugation and ISG15 secretion. This leads to the identification of ISG15-secreting plasmablasts/PCs in patients with active systemic lupus erythematosus. Thus, ISG15-secreting PCs represent a distinct proinflammatory PC subset providing an Ig-independent mechanism of PC action in human autoimmunity.
MHC class II is expressed in restricted lineages and is modulated in response to pathogens and inflammatory stimuli. This expression is controlled by MHC CIITA, which is transcribed from multiple promoters. Although factors required for induction of CIITA are well characterized, less is known about the mechanisms leading to repression of this gene. During plasma cell differentiation, B lymphocyte-induced maturation protein-1 (PRDM1/Blimp-1) represses promoter (p)III of CIITA, responsible for constitutive expression in B cells. pIV is inducible by IFN-γ in epithelia, macrophages and B cells. An IFN regulatory factor-element (IRF-E) in CIITA-pIV, which is bound by IRF-1 and IRF-2, is necessary for this response. This site matches the PRDM1/Blimp-1 consensus binding site, and PRDM1/Blimp-1 is expressed in cell lineages in which this promoter is operative. We, therefore, investigated whether PRDM1 regulates CIITA-pIV and found that PRDM1 bound to CIITA-pIV in vivo and the IRF-E in vitro. PRDM1 repressed IFN-γ-mediated induction of a CIITA-pIV luciferase reporter in a fashion dependent on an intact consensus sequence and competes with IRF-1/IRF-2 for binding to the IRF-E and promoter activation. In human myeloma cell lines that express IRFs, PRDM1 occupancy of CIITA-pIV was associated with resistance to IFN-γ stimulation, while short interfering RNA knockdown of PRDM1 led to up-regulation of CIITA. Our data indicate that PRDM1 is a repressor of CIITA-pIV, identifying a target of particular relevance to macrophages and epithelia. These findings support a model in which PRDM1/Blimp-1 can modulate the cellular response to IFN-γ by competing with IRF-1/IRF-2 dependent activation of target promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.