BackgroundAlthough cerebrospinal fluid (CSF) culture is the diagnostic reference standard for bacterial meningitis, its sensitivity is limited, particularly when antibiotics were previously administered. CSF Gram staining and real-time PCR are theoretically less affected by antibiotics; however, it is difficult to evaluate these tests with an imperfect reference standard.Methods and findingsCSF from patients with suspected meningitis from Salvador, Brazil were tested with culture, Gram stain, and real-time PCR using S. pneumoniae, N. meningitidis, and H. influenzae specific primers and probes. An antibiotic detection disk bioassay was used to test for the presence of antibiotic activity in CSF. The diagnostic accuracy of tests were evaluated using multiple methods, including direct evaluation of Gram stain and real-time PCR against CSF culture, evaluation of real-time PCR against a composite reference standard, and latent class analysis modeling to evaluate all three tests simultaneously.ResultsAmong 451 CSF specimens, 80 (17.7%) had culture isolation of one of the three pathogens (40 S. pneumoniae, 36 N. meningitidis, and 4 H. influenzae), and 113 (25.1%) were real-time PCR positive (51 S. pneumoniae, 57 N. meningitidis, and 5 H. influenzae). Compared to culture, real-time PCR sensitivity and specificity were 95.0% and 90.0%, respectively. In a latent class analysis model, the sensitivity and specificity estimates were: culture, 81.3% and 99.7%; Gram stain, 98.2% and 98.7%; and real-time PCR, 95.7% and 94.3%, respectively. Gram stain and real-time PCR sensitivity did not change significantly when there was antibiotic activity in the CSF.ConclusionReal-time PCR and Gram stain were highly accurate in diagnosing meningitis caused by S. pneumoniae, N. meningitidis, and H. influenzae, though there were few cases of H. influenzae. Furthermore, real-time PCR and Gram staining were less affected by antibiotic presence and might be useful when antibiotics were previously administered. Gram staining, which is inexpensive and commonly available, should be encouraged in all clinical settings.
Surveillance for Haemophilus influenzae meningitis cases was performed in Salvador, Brazil, before and after introduction of H. influenzae type b (Hib) immunization. The incidence of Hib meningitis decreased 69% during the 1-year period after initiation of Hib immunization (from 2.62 to 0.81 cases/100,000 person-years; P<.001). In contrast, the incidence for H. influenzae type a meningitis increased 8-fold (from 0.02 to 0.16 cases/100,000 person-years; P=.008). Pulsed-field gel electrophoretic analysis demonstrated that H. influenzae type a isolates belonged to 2 clonally related groups, both of which were found before Hib immunization commenced. Therefore, Hib immunization contributed to an increased risk for H. influenzae type a meningitis through selection of circulating H. influenzae type a clones. The risk attributable to serotype replacement is small in comparison to the large reduction in Hib meningitis due to immunization. However, these findings highlight the need to maintain surveillance as the use of conjugate vaccines expands worldwide.
Active hospital-based surveillance in the city of Salvador, Brazil, from December 1995 through October 1998, identified 221 patients with confirmed pneumococcal meningitis. Of these 221 patients, 29 (13%) had isolates with intermediate-level resistance to penicillin. Infection with these penicillin-nonsusceptible isolates was significantly associated with age of <2 years (P<.0019), previous antibiotic use (P<.0006), and coresistance to trimethoprim-sulfamethoxazole (P<.0000). Serotype 14 was the most prevalent serotype (55.2%) of penicillin-nonsusceptible isolates. Strain typing by repetitive element BOX polymerase chain reaction (PCR) analysis showed that penicillin-nonsusceptible serotype 14 isolates had closely related BOX PCR patterns, whereas penicillin-susceptible serotype 14 isolates each had distinct, unrelated patterns. Penicillin-nonsusceptible serotype 14 isolates from Salvador and other Brazilian cities had similar BOX PCR patterns. These observations indicate that in Brazil a large proportion of cases of penicillin-nonsusceptible pneumococcal meningitis appear to be caused by a closely related group of serotype 14 strains that may have disseminated to widely separate geographic areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.