The bone morphogenetic protein (BMP)-2 is a potent osteoinductive signal, inducing bone formation in vivo and osteoblast differentiation from non-osseous cells in vitro. The runt domain-related protein Cbfa1/PEBP2alphaA/AML-3 is a critical component of bone formation in vivo and transcriptional regulator of osteoblast differentiation. To investigate the relationship between the extracellular BMP-2 signal, Cbfa1, and osteogenesis, we examined expression of Cbfa1 and osteoblastic genes during the BMP-2 induced osteogenic transdifferentiation of the myoblastic cell line C2C12. BMP-2 treatment completely blocked myotube formation and transiently induced expression of Cbfa1 and the bone-related homeodomain protein Msx-2 concomitant with loss of the myoblast phenotype. While induction of collagen type I and alkaline phosphatase (AP) expression coincided with Cbfa1 expression, Cbfa1 mRNA was strikingly downregulated at the onset of expression of osteopontin (OPN) and osteocalcin (OCN) genes, reflecting the mature osteoblast phenotype. TGF-beta1 treatment effectively suppressed myogenesis and induced Cbfa1 expression but was insufficient to support osteoblast differentiation reflected by the absence of ALP, OPN, and OCN. We addressed whether induction of Cbfa1 in response to BMP-2 results in the transcriptional activation of the OC promoter which contains three enhancer Cbfa1 elements. Transfection studies show BMP-2 suppresses OC promoter activity in C2C12, but not in osteoblastic ROS 17/2.8 cells. Maximal suppression of OC promoter activity in response to BMP-2 requires sequences in the proximal promoter (up to nt -365) and may occur independent of the three Cbfa sites. Taken together, our results demonstrate a dissociation of Cbfa1 expression from development of the osteoblast phenotype. Our findings suggest that Cbfal may function transiently to divert a committed myoblast to a potentially osteogenic cell. However, other factors induced by BMP-2 appear to be necessary for complete expression of the osteoblast phenotype.
The bone morphogenetic protein (BMP)-2 is a potent osteoinductive signal, inducing bone formation in vivo and osteoblast differentiation from non-osseous cells in vitro. The runt domain-related protein Cbfa1/PEBP2alphaA/AML-3 is a critical component of bone formation in vivo and transcriptional regulator of osteoblast differentiation. To investigate the relationship between the extracellular BMP-2 signal, Cbfa1, and osteogenesis, we examined expression of Cbfa1 and osteoblastic genes during the BMP-2 induced osteogenic transdifferentiation of the myoblastic cell line C2C12. BMP-2 treatment completely blocked myotube formation and transiently induced expression of Cbfa1 and the bone-related homeodomain protein Msx-2 concomitant with loss of the myoblast phenotype. While induction of collagen type I and alkaline phosphatase (AP) expression coincided with Cbfa1 expression, Cbfa1 mRNA was strikingly downregulated at the onset of expression of osteopontin (OPN) and osteocalcin (OCN) genes, reflecting the mature osteoblast phenotype. TGF-beta1 treatment effectively suppressed myogenesis and induced Cbfa1 expression but was insufficient to support osteoblast differentiation reflected by the absence of ALP, OPN, and OCN. We addressed whether induction of Cbfa1 in response to BMP-2 results in the transcriptional activation of the OC promoter which contains three enhancer Cbfa1 elements. Transfection studies show BMP-2 suppresses OC promoter activity in C2C12, but not in osteoblastic ROS 17/2.8 cells. Maximal suppression of OC promoter activity in response to BMP-2 requires sequences in the proximal promoter (up to nt -365) and may occur independent of the three Cbfa sites. Taken together, our results demonstrate a dissociation of Cbfa1 expression from development of the osteoblast phenotype. Our findings suggest that Cbfal may function transiently to divert a committed myoblast to a potentially osteogenic cell. However, other factors induced by BMP-2 appear to be necessary for complete expression of the osteoblast phenotype.
Chromatin remodeling at eukaryotic gene promoter sequences accompanies transcriptional activation. Both molecular events rely on specific protein-DNA interactions that occur within these promoter sequences. Binding of CBFalpha/AML/PEBP2alpha (core binding factor alpha/acute myelogenous leukemia/polyoma enhancer binding protein 2alpha) proteins is a key event in both tissue-specific and developmentally regulated osteocalcin (OC) promoter activity. To address linkage between chromatin organization and transcription factor binding, we reconstituted segments of the rat OC gene proximal promoter into mononucleosomes and studied binding of CBFalpha proteins. We analyzed binding of bacterially produced Cbfalpha2Alpha and Cbfalpha2B, two splice variants of the human CBFalpha2 gene, and determined the effect of heterodimerization with the Cbfbeta subunit on binding activity. Our results indicate that binding of the truncated Cbfalpha2A protein to naked DNA is independent of Cbfbeta whereas Cbfalpha2A binding to nucleosomal DNA was enhanced by Cbfbeta. In contrast, the Cbfalpha2B interaction with either naked or nucleosomal DNA was strongly dependent on heterodimerization with the Cbfbeta subunit. Additionally, our results demonstrate that both Cbfalpha2A alone and Cbfalpha2B complexed with Cbfbeta can interact with nucleosomal DNA only if there is a degree of flexibility in the positioning of the histone octamer on the DNA fragment and exposure of the CBFalpha site. This situation was achieved with a DNA segment of 182 bp from the rat OC promoter that preferentially positions mononucleosomes upstream of the CBFalpha binding site and leaves this element partially exposed. Taken together, these results suggest that nucleosomal translational positioning is a major determinant of the binding of CBFalpha factors to nucleosomal DNA.
1alpha,25-Dihydroxyvitamin D3-mediated transcriptional control of the bone-specific osteocalcin (OC) gene requires the integration of regulatory signals at the vitamin D-responsive element (VDRE) and flanking tissue-specific sequences. The 1alpha,25-dihydroxyvitamin D3 receptor (VDR) is a member of the nuclear receptor superfamily and forms a heterodimeric complex with the receptor for 9-cis retinoic acid (RXR) that binds to the VDRE sequence. We have demonstrated previously that changes in chromatin structure at the VDRE region of the rat OC gene promoter accompany transcriptional enhancement in vivo, suggesting a requirement for chromatin remodelling. Here we show that the VDRE in the distal region of the OC gene promoter is refractory to binding of the VDR-RXR complex when organized in a nucleosomal context. Addition of the ligand 1alpha,25-dihydroxyvitamin D3 or the presence of other transcription factors, such as YY1 and Runx/Cbfa (core-binding factor alpha), which also bind to sequences partially overlapping or near the VDRE, is not sufficient to render the VDRE accessible. Thus the VDR-RXR, unlike other steroid receptors, such as glucocorticoid receptor, progesterone receptor and thyroid receptor, is unable to bind its target sequence within a nucleosomal context. Taken together these results demonstrate that nucleosomal remodelling is required for in vivo occupancy of binding sites in the distal region of the OC gene promoter by the regulatory factors responsible for 1alpha,25-dihydroxyvitamin D3-dependent enhancement of transcription.
Changes in local chromatin structure accompany transcriptional activation of eukaryotic genes. In vivo these changes in chromatin organization can be catalyzed by ATP-dependent chromatin-remodeling complexes, such as SWI/SNF. These complexes alter the tight wrapping of DNA in the nucleosomes and can facilitate the mobilization of the histone octamer to adjacent DNA segments, leaving promoter regulatory elements exposed for transcription factor binding. To gain understanding of how the activity of SWI/SNF complexes may be modulated by the different DNA sequences within a natural promoter, we have reconstituted nucleosomes containing promoter segments of the transcriptionally active cell type-specific osteocalcin (OC) gene and determined how they affect the directional movements of the nucleosomes. Our results indicate that SWI/SNF complexes induce octamer sliding to preferential positions in the OC promoter, leading to a nucleosomal organization that resembles that described in intact cells expressing the OC gene. Our studies demonstrate that the position of the histone octamer is primarily determined by sequences within the OC promoter that include or exclude nucleosomes. We propose that these sequences are critical components of the regulatory mechanisms that mediate expression of this tissue-specific gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.