A new and improved synthesis of the peroxisome proliferator-activated receptor (PPAR) agonist ragaglitazar applicable for large-scale preparation has been developed. The convergent synthetic procedure was based on a novel enzymatic kinetic resolution step. The conformation of ragaglitazar bound to the hPPARgamma receptor was quite different compared to the single-crystal structures of the l-arginine salt of ragaglitazar. In particular, the phenoxazine ring system had varying orientations. Ragaglitazar had high affinity for the hPPARalpha and -gamma receptors with IC(50) values of 0.98 and 0.092 microM, respectively. The lack of hPPARdelta activity could be explained by the absence of binding in the tail-up pocket in the hPPARdelta receptor, in contrast to the hPPARdelta agonist GW2433, which was able to bind in both the tail-up and tail-down pockets of the receptor.
The central role of the intracellular enzyme hormone-sensitive lipase (HSL) in regulating fatty acid metabolism makes it an interesting pharmacological target for the treatment of insulin resistant and dyslipidemic disorders where a decrease in delivery of fatty acids to the circulation is desirable, e.g., in individuals with type 2 diabetes, metabolic syndrome, or impaired glucose tolerance. On the basis of a lead structure from high throughput screening, we have identified a very potent type of carbamoyl-triazole inhibitors of HSL. As part of the lead optimization program, four new classes of carbamoyl-triazoles were synthesized and tested with respect to potency, efficacy and selectivity. Methyl-phenyl-carbamoyl-triazoles were identified as potent and efficacious HSL inhibitors. These compounds do not inhibit other hydrolases such as hepatic lipase, lipoprotein lipase, pancreatic lipase, and butyrylcholine esterase. However, the inhibitors 4b and 4g with IC(50) values for HSL of 0.17 and 0.25 microM, respectively, were the only inhibitors selective against acetylcholine esterase. A reversible pseudosubstrate inhibition mechanism is proposed for this class of inhibitors.
Compound 1a (NN414) is a potent opener of Kir6.2/SUR1 K(ATP) channels. Compound 1a inhibits insulin release in vitro and in vivo and preserves beta cell function in preclinical animal models suggesting that such a compound could find use in treatment or prevention of type 1 and type 2 diabetes. The crystal structure and a convergent synthesis of 1a are presented together with a range of new analogues of 1a. Several compounds, e.g., 6-chloro-3-(1-methyl-1-phenylethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (1h), were found to be potent openers of Kir6.2/SUR1 K(ATP) channels and were able to suppress glucose-stimulated insulin release from rat islets in vitro (EC(50) = 0.04 +/- 0.01 muM) and in vivo after intravenous or peroral administration to hyperinsulinemic obese Zucker rats (ED(50) = 4.0 mg/kg). Structural modifications of this series of K(ATP) channel openers have provided compounds with promising pharmacokinetic properties indicating that brief periods of beta cell rest can be achieved.
Hormone-sensitive lipase (HSL) is an intracellular enzyme that has a central role in the regulation of fatty acid metabolism. The enzyme, therefore, is a potentially interesting pharmacological target for the treatment of insulin resistance and dyslipidemic disorders. Based on a high throughput screening, a carbamate based HSL inhibitor was identified and optimized into the selective HSL inhibitors 4-hydroxymethyl-piperidine-1-carboxylic acid 4-(5-trifluoromethylpyridin-2-yloxy)-phenyl ester (13f) and 4-hydroxy-piperidine-1-carboxylic acid 4-(5-trifluoromethylpyridin-2-yloxy)-phenyl ester (13g), with IC50 values of 110 and 500 nM, respectively. Both inhibitors were active in acute antilipolytic experiments in vivo and none of the inhibitors inhibited the cytochrome P450 (CYP) isoforms 2D6, 3A4, and 1A2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.