In this paper, we use recent results of Jarner & Roberts ( "Ann. Appl. Probab.," 12, 2002, 224) to show polynomial convergence rates of Monte Carlo Markov Chain algorithms with polynomial target distributions, in particular random-walk Metropolis algorithms, Langevin algorithms and independence samplers. We also use similar methodology to consider polynomial convergence of the Gibbs sampler on a constrained state space. The main result for the random-walk Metropolis algorithm is that heavy-tailed proposal distributions lead to higher rates of convergence and thus to qualitatively better algorithms as measured, for instance, by the existence of central limit theorems for higher moments. Thus, the paper gives for the first time a theoretical justification for the common belief that heavy-tailed proposal distributions improve convergence in the context of random-walk Metropolis algorithms. Similar results are shown to hold for Langevin algorithms and the independence sampler, while results for the mixing of Gibbs samplers on uniform distributions on constrained spaces are rather different in character. Copyright 2007 Board of the Foundation of the Scandinavian Journal of Statistics..
We consider Markov chains in the context of iterated random functions and show the existence and uniqueness of an invariant distribution under a local contraction condition combined with a drift condition, extending results of Diaconis and Freedman. From these we deduce various other topological stability properties of the chains. Our conditions are typically satisfied by, for example, queueing and storage models where the global Lipschitz condition used by Diaconis and Freedman normally fails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.