The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for all feed profiles applied and, in addition, there was a time-dependent decrease in specific productivity. The specific glucose uptake rate increased with time for constant specific growth rate indicating that the maintenance requirements increased with time, possibly due to a decreasing K(+) concentration. The physiological state of the cells was monitored during the cultivations using a flow cytometry assay based on the permeability of the cell membrane to propidium iodide. In the latter parts of the fed-batch cultures with a linear feed profile, a large portion of the cell population was found to have a permeable membrane, indicating a large percentage of dead cells. By assuming that only cells with a nonpermeable membrane contributed to growth and product formation, the physiological properties of this subpopulation were calculated.
The 7-radiation following single and double neutron capture in isotopieally enriched 62Ni was studied at the high flux reactor of the Institut Laue-Langevin, using a pair and Compton suppressed germanium detector. Measurements before and after 170 d of breeding were performed. The 7-ray fluxes through 63Ni and 64Ni are discussed; several new levels and spin-parity assignments were found. On the basis of the known discrete levels and the low-energy neutron resonances, level density parameters were determined within the Constant Temperature Fermi Gas model. The neutron binding energies were measured as B, (63Ni)= 6837.92(18) keV and B, (64Ni)= 9657.64(24) keV. The 63Ni (n, 7) cross section for reactor neutrons was / L'Y measured to be a = 20" _J b. 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.