The synthesis and release of non-neuronal acetylcholine, a widely expressed signaling molecule, were investigated in the human placenta. This tissue is free of cholinergic neurons, i.e. a contamination of neuronal acetylcholine can be excluded. The villus showed a choline acetyltransferase (ChAT) activity of 0.65 nmol/mg protein per h and contained 500 nmol acetylcholine/g dry weight. In the absence of cholinesterase inhibitors the release of acetylcholine from isolated villus pieces amounted to 1.3 nmol/g wet weight per 10 min corresponding to a fractional release rate of 0.13% per min. The following substances did not significantly modify the release of acetylcholine: oxotremorine (1 microM), scopolamine (1 microM), (+)-tubocurarine (30 microM), forskolin (30 microM), ouabain (10 microM), 4alpha-phorbol 12,13-didecanoate (1 microM) and tetrodotoxin (1 microM). Removal of extracellular calcium, phorbol 12,13-dibutyrate (1 microM) and colchicine (100 microM) reduced the acetylcholine release between 30% and 50%. High potassium chloride (54 mM and 108 mM) increased the acetylcholine release slightly (by about 30%). A concentration of 10 microM nicotine was ineffective, but 100 microM nicotine enhanced acetylcholine release gradually over a 50-min period without desensitization of the response. The facilitatory effect of nicotine was prevented by 30 microM (+)-tubocurarine. Inhibitors of cholinesterase (physostigmine, neostigmine; 3 microM) facilitated the efflux of acetylcholine about sixfold, and a combination of both (+)-tubocurarine (30 microM) and scopolamine (1 microM) halved the enhancing effect. In conclusion, release mechanisms differ between non-neuronal and neuronal acetylcholine. Facilitatory nicotine receptors are present which are activated by applied nicotine or by blocking cholinesterase. Thus, cholinesterase inhibitors increase assayed acetylcholine by two mechanisms, protection of hydrolysis and stimulation of facilitatory nicotine receptors.
The activity of choline acetyltransferase (ChAT) was investigated in the human placenta before and after long-term incubation (24 h) to test the effects of sex hormones, nicotine and forskolin. ChAT activity differed considerably between the amnion (0.03 micromol/mg protein/h) and the villus (0.56). After long-term incubation, ChAT activity persisted in the latter but declined in the amnion. Neither sex hormones (beta-estradiol, testosterone, progesterone; 10 or 100 nM each) nor follicle stimulating hormone and luteinizing hormone (FSH/LH; 8.4 U/ml each) modified ChAT activity. Also nicotine (1 nM-100 microM) did not affect ChAT activity. Forskolin, an activitor of adenylyl cyclase, reduced ChAT activity in the villus but not in amnion. The present model offers the possibility to investigate ChAT regulation in intact tissue under long-term incubation. The risks of maternal smoking during pregnancy cannot be attributed to an effect of nicotine on placental ChAT activity. Differences in the regulation of ChAT appear to exist between neuronal and nonneuronal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.