Particulate composites of ferrite and ferroelectric phases with xNiFe2O4 (NF) and (1 − x)Pb0.988(Zr0.52Ti0.48)0.976Nb0.024O3 (where x = 2, 10, 20, 30, 50, 70, and 100 wt. %) were prepared in situ by sol-gel method. The presence of a diphase composition was confirmed by X-ray diffraction while the microstructure of the composites was studied by scanning electron microscopy revealing a good mixing of the two phases and a good densification of the bulk ceramics. The dielectric permittivity shows usual dielectric dispersion behavior with increasing frequency due to Maxwell-Wagner interfacial polarization. AC conductivity measurements made in frequency range 1 Hz-1 MHz suggest that the conduction process is due to mixed polaron hopping. The effect of NF phase concentration on the P-E and M-H hysteresis behavior and dielectric properties of the composites was investigated. At low NF concentration a sharp ferro-paraelectric transition peak can be observed at around 360 °C while for higher NF concentrations a trend to a diffuse phase transition occurs. All the composite samples exhibit typical ferromagnetic hysteresis loops, indicating the presence of ordered magnetic structure.
We propose a new mode adapter which allows more efficient launching of the optical power selectively in the fundamental mode of a multimode waveguide. Theoretical and experimental results confirm that such a mode adapter increases the performances in terms of coupling efficiency, coupling tolerances and transmitted power with respect to previously proposed solutions. Proof of principle of device operation is obtained with a simple Coupled Mode Theory model. Experimental results are obtained at a wavelength of 840 nm in Lithium Niobate Soft Proton Exchanged waveguides and agree very well with theoretical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.