The synthesis and structural characterization of a new liquid crystalline coordination complex based on pentacoordinated Zn(II) metal centre with the coordination fulfilled by the tridentate chelating N^N^N 2,2’;6’,2”-terpyridine ligand and two monoanionic gallates decorated with several long alkyl chains is described. The mesomorphic properties were accurately investigated by small- and wide-angle X-ray scattering studies. Despite the bulky coordination around the metal centre, the complex self-organizes into a smectic phase and, based on the structural and geometrical parameters, a model for the supramolecular organization in the liquid crystalline phase is proposed. Electrochemical investigations showed the importance of the molecular structure of the coordination complex in enhancing its aqueous sensing capacities: the bulky organic ligands form an organic shell separating the metal centres and favouring the redox system through their reduction followed by stripping.
CuBi2O4 synthesized by thermolysis of a new Bi(III)-Cu(II) oxalate coordination compound, namely Bi2Cu(C2O4)4·0.25H2O, was tested through its integration within carbon nanofiber paste electrode, namely CuBi/carbon nanofiber (CNF), for the electrochemical detection of amoxicillin (AMX) in the aqueous solution. Thermal analysis and IR spectroscopy were used to characterize a CuBi2O4 precursor to optimize the synthesis conditions. The copper bismuth oxide obtained after a heating treatment of the precursor at 700 °C/1 h was investigated by an X-ray diffraction and scanning electron microscopy. The electrochemical behavior of CuBi/CNF in comparison with CNF paste electrode showed the electrocatalytic activity of CuBi2O4 toward amoxicillin detection. Two potential detections, with one at the potential value of +0.540 V/saturated calomel electrode (SCE) and the other at the potential value of −1.000 V/SCE, were identified by cyclic voltammetry, which were exploited to develop the enhanced voltammetric and/or amperometric detection protocols. Better electroanalytical performance for AMX detection was achieved for CuBi/CNF using differential-pulsed and square-wave voltammetries than others reported in the literature. Very nice results obtained through anodic and cathodic currents recorded at +0.750 V/SCE and −1.000 V/SCE in the same time period using a pseudo multiple-pulsed amperometry technique showed the great potential of the CuBi/CNF paste electrode for practical applications in amoxicillin detection in aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.