Monazite is one of the most valuable natural resources for rare earth oxides (REOs) used as dopants with high added value in ceramic materials for extreme environments applications. The complexity of the separation process in individual REOs, due to their similar electronic configuration and physical–chemical properties, is reflected in products with high price and high environmental footprint. During last years, there was an increasing interest for using different mixtures of REOs as dopants for high temperature ceramics, in particular for ZrO2-based thermal barrier coatings (TBCs) used in aeronautics and energy co-generation. The use of mixed REOs may increase the working temperature of the TBCs due to the formation of tetragonal and cubic solid solutions with higher melting temperatures, avoiding grain size coarsening due to interface segregation, enhancing its ionic conductivity and sinterability. The thermal stability of the coatings may be further improved by using rare earth zirconates with perovskite or pyrochlore structures having no phase transitions before melting. Within this research framework, firstly we present a review analysis about results reported in the literature so far about the use of ZrO2 ceramics doped with mixed REOs for high temperature applications. Then, preliminary results about TBCs fabricated by electron beam evaporation starting from mixed REOs simulating the real composition as occurring in monazite source minerals are reported. This novel recipe for ZrO2-based TBCs, if optimized, may lead to better materials with lower costs and lower environmental impact, as a result of the elimination of REOs extraction and separation in individual lanthanides. Preliminary results on the compositional, microstructure, morphological, and thermal properties of the tested materials are reported.
Cellular uptake and cytotoxicity of nanostructured hydroxyapatite (nanoHAp) are dependent on its physical parameters. Therefore, an understanding of both surface chemistry and morphology of nanoHAp is needed in order to be able to anticipate its in vivo behavior. The aim of this paper is to characterize an engineered nanoHAp in terms of physico-chemical properties, biocompatibility, and its capability to reconstitute the orbital wall fractures in rabbits. NanoHAp was synthesized using a high pressure hydrothermal method and characterized by physico-chemical, structural, morphological, and optical techniques. X-ray diffraction revealed HAp crystallites of 21 nm, while Scanning Electron Microscopy (SEM) images showed spherical shapes of HAp powder. Mean particle size of HAp measured by DLS technique was 146.3 nm. Biocompatibility was estimated by the effect of HAp powder on the adhesion and proliferation of mesenchymal stem cells (MSC) in culture. The results showed that cell proliferation on powder-coated slides was between 73.4% and 98.3% of control cells (cells grown in normal culture conditions). Computed tomography analysis of the preformed nanoHAp implanted in orbital wall fractures, performed at one and two months postoperative, demonstrated the integration of the implants in the bones. In conclusion, our engineered nanoHAp is stable, biocompatible, and may be safely considered for reconstruction of orbital wall fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.