Layered films consisting of transparent conducting oxides, Ga-doped ZnO (GZO) and Nb-doped TiO2 (TNO), were fabricated on glass substrates and their electrical properties were investigated. As-deposited TNO/GZO films showed the mean resistivity of TNO and GZO films. Thermal annealing reduced the resistivity of these films; however, TNO/GZO films exhibited the lowest value among them. The carrier concentration and Hall mobility of TNO/GZO films increased with the reduction in electrical resistivity. The thickness dependence, annealing temperature dependence, and crystalline orientation of the TNO and GZO layers in TNO/GZO films indicated that the improvement of the electrical properties of the GZO underlayer contributed to the resistivity reduction behavior of TNO/GZO films induced by thermal annealing.
We numerically predict the occurrence of intermittent chaos in a semiconductor laser with optical feedback using the information on a chaotic attractor. We succeed in preventing the intermittent chaos by perturbing the optical feedback phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.