PURPOSE: Bile-containing gastroesophageal reflux may promote cancer at extraesophageal sites. Acidic bile can accelerate NF-κB activation and molecular events, linked to premalignant changes in murine hypopharyngeal mucosa (HM). We hypothesize that short-term in vivo topical application of NF-κB inhibitor BAY 11-7082 can prevent acidic bile–induced early preneoplastic molecular events, suggesting its potential role in disease prevention. EXPERIMENTAL DESIGN: We topically exposed HM (C57Bl/6j wild-type) to a mixture of bile acids at pH 3.0 with and without BAY 11-7082 3 times/day for 7 days. We used immunofluorescence, Western blotting, immunohistochemistry, quantitative polymerase chain reaction, and polymerase chain reaction microarrays to identify NF-κB activation and its associated oncogenic mRNA and miRNA phenotypes, in murine hypopharyngeal cells in vitro and in murine HM in vivo. RESULTS: Short-term exposure of HM to acidic bile is a potent stimulus accelerating the expression of NF-κB signaling (70 out of 84 genes) and oncogenic molecules. Topical application of BAY 11-7082 sufficiently blocks the effect of acidic bile. BAY 11-7082 eliminates NF-κB activation in regenerating basal cells of acidic bile–treated HM and prevents overexpression of molecules central to head and neck cancer, including bcl-2, STAT3, EGFR, TNF-α, and WNT5A. NF-κB inhibitor reverses the upregulated “oncomirs” miR-155 and miR-192 and the downregulated “tumor suppressors” miR-451a and miR-375 phenotypes in HM affected by acidic bile. CONCLUSION: There is novel evidence that acidic bile–induced NF-κB–related oncogenic mRNA and miRNA phenotypes are generated after short-term 7-day mucosal exposure and that topical mucosal application of BAY 11-7082 can prevent the acidic bile–induced molecular alterations associated with unregulated cell growth and proliferation of hypopharyngeal cells.
Common manifestations of COVID-19 are respiratory and can extend from mild symptoms to severe acute respiratory distress. The severity of the illness can also extend from mild disease to life-threatening acute respiratory distress syndrome (ARDS). SARS-CoV-2 infection can also affect the gastrointestinal tract, liver and pancreatic functions, leading to gastrointestinal symptoms. Moreover, SARS-CoV-2 can cause central and peripheral neurological manifestations, affect the cardiovascular system and promote renal dysfunction. Epidemiological data have indicated that cancer patients are at a higher risk of contracting the SARS-CoV-2 virus. Considering the multitude of clinical symptoms of COVID-19, the objective of the present review was to summarize their pathophysiology in previously healthy patients, as well as in those with comorbidities. The present review summarizes the current, though admittedly fluid knowledge on the pathophysiology and symptoms of COVID-19 infection. Although unclear issues still remain, the present study contributes to a more complete understanding of the disease, and may drive the direction of new research. The recognition of the severity of the clinical symptoms of COVID-19 is crucial for the specific therapeutic management of affected patients.
Bile-containing gastro-duodenal reflux has been clinically considered an independent risk factor in hypopharyngeal carcinogenesis. We recently showed that the chronic effect of acidic bile, at pH 4.0, selectively induces NF-κB activation and accelerates the transcriptional levels of genes, linked to head and neck cancer, in normal hypopharyngeal epithelial cells. Here, we hypothesize that NF-κB inhibition is capable of preventing the acidic bile-induced and cancer-related mRNA phenotype, in treated normal human hypopharyngeal cells. In this setting we used BAY 11-7082, a specific and well documented pharmacologic inhibitor of NF-κB, and we observed that BAY 11-7082 effectively inhibits the acidic bile-induced gene expression profiling of the NF-κB signaling pathway (down-regulation of 72 out of 84 analyzed genes). NF-κB inhibition significantly prevents the acidic bile-induced transcriptional activation of NF-κB transcriptional factors, RELA (p65) and c-REL, as well as genes related to and commonly found in established HNSCC cell lines. These include anti-apoptotic bcl-2, oncogenic STAT3, EGFR, ∆Np63, TNF-α and WNT5A, as well as cytokines IL-1β and IL-6. Our findings are consistent with our hypothesis demonstrating that NF-κB inhibition effectively prevents the acidic bile-induced cancer-related mRNA phenotype in normal human hypopharyngeal epithelial cells supporting an understanding that NF-κB may be a critical link between acidic bile and early preneoplastic events in this setting.
Cancers of the laryngopharynx represent the most devastating of the head and neck malignancies and additional risk factors are now epidemiologically linked to this disease. Using an in vivo model (Mus musculus C57Bl/6J), we provide novel evidence that acidic bile (pH 3.0) progressively promotes invasive cancer in the hypopharynx. Malignant lesions are characterized by increasing: (i) oxidative DNA-damage, (ii) γH2AX expression, (iii) NF-κB activation, and (iv) p53 expression. Histopathological changes observed in murine hypopharyngeal mucosa exposed to acidic bile were preceded by the overexpression of Tnf, Il6, Bcl2, Egfr, Rela, Stat3, and the deregulation of miR-21, miR-155, miR-192, miR-34a, miR-375, and miR-451a. This is the first study to document that acidic bile is carcinogenic in the upper aerodigestive tract. We showed that oxidative DNA-damage produced by acidic bile in combination with NF-κB-related anti-apoptotic deregulation further supports the underlying two-hit hypothesized mechanism. Just as importantly, we reproduced the role of several biomarkers of progression that served as valuable indicators of early neoplasia in our experimental model. These findings provide a sound basis for proposing translational studies in humans by exposing new opportunities for early detection and prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.