Transitions between protein states are triggered by external stimuli. This knowledge leads to the control of protein function. Herein, we report a large scale (90μs) study on the conformational space...
How do plants cope with excess light energy? Crop health and stress tolerance are governed by molecular photoprotective mechanisms. Protective exciton quenching in plants is activated by membrane energization, via unclear conformational changes in proteins called antennas. Here we show that pH and salt gradients stimulate the response of such an antenna under low and high energization by all-atom Molecular Dynamics Simulations. Novel insight establishes that helix-5 (H5) conformation in CP29 from spinach is regulated by chemiosmotic factors. This is selectively correlated with the chl-614 macrocycle deformation and interactions with nearby pigments, that could suggest a role in plant photoprotection. Adding to the significance of our findings, H5 domain is conserved among five antennas (LHCB1-5). These results suggest that light harvesting complexes of Photosystem II, one of the most abundant proteins on earth, can sense chemiosmotic gradients via their H5 domains in an upgraded role from a solar detector to also a chemiosmotic sensor.
Photosynthesis is common in nature, converting sunlight energy into proton motive force and reducing power. The increased spectral range absorption of light exerted by pigments (i.e. chlorophylls, Chls) within Light Harvesting Complexes (LHCs) proves an important advantage under low light conditions. However, in the exposure to excess light, oxidative damages and ultimately cell death can occur. A down-regulatory mechanism, thus, has been evolved (non-photochemical quenching, NPQ). The mechanistic details of its major component (qE) are missing at the atomic scale. The research herein, initiates on solid evidence from the current NPQ state of the art, and reveals a detailed atomistic view by large scale Molecular Dynamics, Metadynamics and ab initio Simulations. The results demonstrate a complete picture of an elaborate common molecular design. All probed antenna proteins (major LHCII from spinach-pea, CP29 from spinach) show striking plasticity in helix-D, under NPQ conditions. This induces changes in Qy bands in excitation and absorption spectra of the near-by pigment pair (Chl613-614) that could emerge as a new quenching site. Zeaxanthin enhances this plasticity (and possibly the quenching) even at milder NPQ conditions.
Nonphotochemical quenching is the protective mechanism against overexcitation of photosystem II, triggered by excess ΔpH in photosynthetic membranes. The light-harvesting complexes (LHCs), the de-epoxidation of violaxanthin to zeaxanthin, and the photosystem II subunit S (PsbS) work in synergy for an optimized multilevel response. Understanding the fine details of this synergy has proven challenging to scientific research. Here, we employ large-scale, all-atom molecular simulations and beyond experimental insight, we proceed a step further in identifying the PsbS dynamics that could possibly be associated with this synergy. For the first time, to our knowledge, we probe the distinct behavior of PsbS under ΔpH that probes the details of the potential dimer-to-monomer transition, and in a violaxanthin/zeaxanthin-rich membrane, at an all-atom resolution. We propose that the lumen-exposed residues, threonine 162 and glutamic acid 173, form stabilizing hydrogen bonds between the PsbS monomers only at high lumen pH, whereas at low pH (excess ΔpH) this interaction is lost, and leads to higher flexibility of the protein and potentially to the dimer-to-monomer transition. Lastly, we discuss how conformational changes under the presence of ΔpH/zeaxanthin are related to the PsbS role in the current nonphotochemical quenching model in the literature. For the latter, we probe a PsbS-monomeric LHCII association. The association is proposed to potentially alter the monomeric LHCII sensitivity to ΔpH by changing the pKa values of interacting LHCII residues. This serves as an example where protonation-ligation events enhance protein-protein interactions fundamental to many life processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.