The self-propagated exothermic reaction characteristics of Al/Ni multilayer powders can be employed as heat sources and controlled by cold-rolling conditions. This feature depends on the heat propagation inside of crystal grains. Therefore, the crystallographic factor that relates cold-rolling conditions to exothermic characteristics should be identified. To determine the change trend in crystallite size with the increase in the number of rolling passes, the crystallite sizes in the Al/Ni multilayer powder were calculated using Scherrer’s equation, and precise X-ray profiles were obtained using the synchrotron radiation X-ray diffraction method. The results indicate that the crystallite sizes were refined by increasing the number of rolling passes up to 30; from 30 to 40 passes, however, the crystallite sizes increased. It is assumed that, in addition to the Al/Ni multilayer powder being thin and multilayered, the increase in crystallite size at 40 passes allows for the smooth propagation of heat, consequently improving the exothermic characteristics. Therefore, crystallite size is the dominant parameter in the relationship between rolling conditions and exothermic characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.