<p class="Abstract"><span lang="EN-US"><span style="vertical-align: inherit;"><span style="vertical-align: inherit;">Un système biométrique d'identification et d'authentification permet la reconnaissance automatique d'un individu en fonction de certaines caractéristiques ou caractéristiques uniques qu'il possède. </span><span style="vertical-align: inherit;">La reconnaissance de l'iris est une méthode d'identification biométrique qui applique la reconnaissance des formes aux images de l'iris. </span><span style="vertical-align: inherit;">En raison des motifs épigénétiques uniques de l'iris, la reconnaissance de l'iris est considérée comme l'une des méthodes les plus précises dans le domaine de l'identification biométrique. </span><span style="vertical-align: inherit;">L'algorithme de segmentation proposé dans cet article commence par déterminer les régions de l'œil à l'aide d'une approche neuronale non supervisée, après que le contour de l'œil a été trouvé à l'aide du bord de Canny, la transformation de Hough est utilisée pour déterminer le centre et le rayon de la pupille et de l'iris. . </span><span style="vertical-align: inherit;">Ensuite, la normalisation permet de transformer la région de l'iris circulaire segmenté en une forme rectangulaire de taille fixe en utilisant le modèle de feuille de caoutchouc de Daugman. </span><span style="vertical-align: inherit;">Une transformation en ondelettes discrètes (DWT) est appliquée à l'iris normalisé pour réduire la taille des modèles d'iris et améliorer la précision du classificateur. </span><span style="vertical-align: inherit;">Enfin, la base de données URIBIS iris est utilisée pour la vérification individuelle de l'utilisateur en utilisant le classificateur KNN ou la machine à vecteur de support (SVM) qui, sur la base de l'analyse du code de l'iris lors de l'extraction des caractéristiques, est discutée.</span></span></span></p>
<span lang="EN-GB">A biometric system of identification and authentication provides automatic recognition of an individual based on certain unique features or characteristic possessed by an individual. Iris recognition is a biometric identification method that uses pattern recognition on the images of the iris. Owing to the unique epigenetic patterns of the iris, Iris recognition is considered as one of the most accurate methods in the field of biometric identification. One of the crucial steps in the iris recognition system is the iris segmentation because it significantly affects the accuracy of the feature extraction the iris. The segmentation algorithm proposed in this article starts with determining the regions of the eye using unsupervised neural approach, after the outline of the eye is found using the Canny edge, The Hough Transform is employed to determine the </span><span lang="EN-US">center</span><span lang="EN-GB"> and radius of the pupil and the iris.</span>
This paper proposes a new classification procedure based on the competitive concept, divided into three processing stages. It begins by the estimation of the Probability Density Function (pdf), followed by a competitive training neural network with the Mahalanobis distance as an activation function. This stage allows detecting the local maxima of the pdf. Then, we use the competitive Hebbian learning to analyse the connectivity between the detected maxima of the pdf upon the Mahalanobis distance. The so detected groups of maxima are then used for the classification process. Compared to the K-means clustering or the clustering approaches based on the different competitive learning schemes, the proposed approach has proven, under a number of real (positron emission tomography image) and synthetic data samples, that it does not pass by any thresholding and does not require any prior information on the number of classes or on the structure of their distributions in the data set.Keywords: PET image; positron emission tomography; probability density function; competitive neural networks; Mahalanobis distance; competitive Hebbian learning; topology preserving feature; K-means; classification; competitive concept; thresholding. 2 M. Timouyas, S. Eddarouich and A. HammouchReference to this paper should be made as follows: Timouyas, M., Eddarouich, S. and Hammouch, A. (2017) 'A new neural unsupervised classification approach using amended competitive Hebbian learning: pet image segmentation insights', Int.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.