BackgroundAdverse effects of high-fat diets (HFD) on metabolic homeostasis are linked to adipose tissue dysfunction. The goal of this study was to examine the effect of the HFD nature on adipose tissue activity, metabolic disturbances and glucose homeostasis alterations in male mice compared with female mice.MethodsC57BL/6J mice were fed either a chow diet or HFD including vegetal (VD) or animal (AD) fat. Body weight, plasmatic parameters and adipose tissue mRNA expression levels of key genes were evaluated after 20 weeks of HFD feeding.ResultsHFD-fed mice were significantly heavier than control at the end of the protocol. Greater abdominal visceral fat accumulation was observed in mice fed with AD compared to those fed a chow diet or VD. Correlated with weight gain, leptin levels in systemic circulation were increased in HFD-fed mice in both sexes with a significant higher level in AD group compared to VD group. Circulating adiponectin levels as well as adipose tissue mRNA expression levels were significantly decreased in HFD-fed male mice. Although its plasma levels remained unchanged in females, adiponectin mRNA levels were significantly reduced in adipose tissue of both HFD-fed groups with a more marked decrease in AD group compared to VD group. Only HFD-fed male mice were diabetic with increased fasting glycaemia. On the other hand, insulin levels were only increased in AD-fed group in both sexes associated with increased resistin levels. VD did not induce any apparent metabolic alteration in females despite the increased weight gain. Peroxisome Proliferator-Activated Receptors gamma-2 (PPARγ2) and estrogen receptor alpha (ERα) mRNA expression levels in adipose tissue were decreased up to 70% in HFD-fed mice but were more markedly reduced in male mice as compared with female mice.ConclusionsThe nature of dietary fat determines the extent of metabolic alterations reflected in adipocytes through modifications in the pattern of adipokines secretion and modulation of key genes mRNA expression. Compared with males, female mice demonstrate higher capacity in controlling glucose homeostasis in response to 20 weeks HFD feeding. Our data suggest gender specific interactions between the diet's fatty acid source, the adipocyte-secreted proteins and metabolic disorders.
In addition to its classical receptor, CD40, it is now well established that CD154 also binds αIIbβ3, α5β1, and αMβ2 integrins. Although these integrins are all members of the same family, they bind CD154 differently. The current investigation aims to analyze the interaction of CD154 with α5β1 and αMβ2 and investigate its role in bidirectional signals in various human cell lines. Results obtained herein indicate that the CD154 residues involved in the interaction with α5β1 are N151 and Q166, whereas those involved in αMβ2 binding are common to residues required for CD40, namely Y145 and R203. Soluble CD40/CD154 or αMβ2/CD154 complexes do not interfere with the binding of CD154 to α5β1-positive cells, but inhibit the binding of CD154 to CD40-or αMβ2-positive cells, respectively. Ligation of CD154 on CD154-positive cells with soluble CD40, αIIbβ3, α5β1, or αMβ2 stimulates intracellular signaling, including MAPK phosphorylation. Given that CD154 exists as a trimer, our data strongly suggest that CD154 may bind concomitantly to two receptors of the same or different family, and biologically activate cells expressing both receptors. The characterization of CD154/receptor interactions helps the identification of new therapeutic targets for the prevention and/or treatment of CD154-associated autoimmune and inflammatory diseases.Keywords: Activation r Binding r CD154 r CD40 r Integrins Introduction CD154, also known as CD40 ligand (CD40L) or gp39, is a member of the tumor necrosis factor (TNF) superfamily. It was initially thought to be only expressed on activated CD4 + T cells; however, a wider distribution of CD154 is now established, including a variety of hematopoietic and nonhematopoietic cells [1,2]. Soluble CD154 (sCD154, encompassing residues M113-261), is released from activated T cells and platelets by an MMP-dependent Correspondence: Dr. Walid Mourad e-mail: mw.mourad@umontreal.ca cleavage [3,4]. Like other members of the TNF superfamily, both membrane and sCD154 form a noncovalently linked homotrimer [5,6], a structural requirement for CD154 biological activity [3,7].CD40, a type I transmembrane protein belonging to the TNF receptor superfamily, is the classical receptor for CD154. CD40 was initially considered a pan-B-cell antigen, but was subsequently shown to be expressed on a variety of cell types, including B lymphocytes, monocytes/macrophages, DCs, platelets, epithelial * These authors contributed equally to this work.C 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu Eur. J. Immunol. 2015. 45: 592-602 Leukocyte signaling 593 cells, as well as endothelial cells [2,[8][9][10][11]. CD154/CD40 interactions were shown to be implicated in many biological responses, from inducing proliferation, differentiation, and Ig switching in resting B cells [12] to enhancing surface expression of costimulatory and adhesion molecules and stimulating cytokine production in immune and nonimmune cells [13,14]. It was considered that the CD154-mediated biological function involves only an interaction wi...
Aim: Inherent mechanisms leading to vascular smooth muscle cells (VSMC) alterations in obesitylinked type 2 diabetes (T2D) situation remain to be clarified. This study evaluates the impact of supernatant of adipocytes extracted from mice fed high-fat-diets (HFD) on the proliferation and apoptosis of VSMC. Methods: Adipocytes were extracted from visceral white fat pads of male and female C57Bl6 mice showing different stages of metabolic alterations after 20 weeks of vegetal or animal HFD feeding. These cells were stimulated or not with insulin or glucose to condition VSMC media. After 24h of stimulation with adipocyte supernatants (AdS), VSMC proliferation and sustainability were assessed in the absence and presence of AdS. CD36 and insulin receptor mRNA levels were also evaluated. Results: Proliferation and viability of VSMC were significantly modulated by the nature of the AdS used and the gender of mice from which adipocytes have been extracted. The most extensive effects on VSMC were triggered by adipocytes from males fed animal HFD and females fed vegetal HFD. These effects were concurrent with increased leptin concentration and decreased adiponectin levels in AdS. In addition, adipocytes of HFD-fed mice increased caspase-3 activity and apoptosis in VSMC. Significant up-regulation of CD36 mRNA was also found in these cells. Conclusion: Adipocytes of HFD-fed mice induce VSMC alterations. These changes involved mouse gender, most probably correlated to the diet-induced adipocyte secretion profile. Greater sensitivity to AdS effects in VSMC raises concerns about the more frequent cardiovascular events associated with obesity in the presence of T2D, which impairs adipocyte activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.