When Part-of-Speech annotated data is scarce, e.g. for under-resourced languages, one can turn to cross-lingual transfer and crawled dictionaries to collect partially supervised data. We cast this problem in the framework of ambiguous learning and show how to learn an accurate history-based model. Experiments on ten languages show significant improvements over prior state of the art performance.
This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2021, low-resource speech translation and multilingual speech translation. The ON-TRAC Consortium is composed of researchers from three French academic laboratories and an industrial partner: LIA (Avignon Université), LIG (Université Grenoble Alpes), LIUM (Le Mans Université), and researchers from Airbus. A pipeline approach was explored for the lowresource speech translation task, using a hybrid HMM/TDNN automatic speech recognition system fed by wav2vec features, coupled to an NMT system. For the multilingual speech translation task, we investigated the use of a dual-decoder Transformer that jointly transcribes and translates an input speech signal. This model was trained in order to translate from multiple source languages to multiple target ones.
The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.
This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2022: low-resource and dialect speech translation. For the Tunisian Arabic-English dataset (low-resource and dialect tracks), we build an end-to-end model as our joint primary submission, and compare it against cascaded models that leverage a large fine-tuned wav2vec 2.0 model for ASR. Our results show that in our settings pipeline approaches are still very competitive, and that with the use of transfer learning, they can outperform end-to-end models for speech translation (ST). For the Tamasheq-French dataset (low-resource track) our primary submission leverages intermediate representations from a wav2vec 2.0 model trained on 234 hours of Tamasheq audio, while our contrastive model uses a French phonetic transcription of the Tamasheq audio as input in a Conformer speech translation architecture jointly trained on automatic speech recognition, ST and machine translation losses. Our results highlight that self-supervised models trained on smaller sets of target data are more effective to low-resource end-to-end ST finetuning, compared to large off-the-shelf models. Results also illustrate that even approximate phonetic transcriptions can improve ST scores.
Arabizi is a written form of spoken Arabic, relying on Latin characters and digits. It is informal and does not follow any conventional rules, raising many NLP challenges. In particular, Arabizi has recently emerged as the Arabic language in online social networks, becoming of great interest for opinion mining and sentiment analysis. Unfortunately, only few Arabizi resources exist and state-of-the-art language models such as BERT do not consider Arabizi.In this work, we construct and release two datasets: (i) LAD, a corpus of 7.7M tweets written in Arabizi and (ii) SALAD, a subset of LAD, manually annotated for sentiment analysis. Then, a BERT architecture is pre-trained on LAD, in order to create and distribute an Arabizi language model called BAERT. We show that a language model (BAERT) pre-trained on a large corpus (LAD) in the same language (Arabizi) as that of the fine-tuning dataset (SALAD), outperforms a state-of-the-art multi-lingual pretrained model (multilingual BERT) on a sentiment analysis task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.