Previous studies documented that long-term hepatitis C virus (HCV) replication in human hepatoma Huh-7.5 cells resulted in viral fitness gain, expansion of the mutant spectrum, and several phenotypic alterations. In the present work, we show that mutational waves (changes in frequency of individual mutations) occurred continuously and became more prominent as the virus gained fitness. They were accompanied by an increasing proportion of heterogeneous genomic sites that affected 1 position in the initial HCV population and 19 and 69 positions at passages 100 and 200, respectively. Analysis of biological clones of HCV showed that these dynamic events affected infectious genomes, since part of the fluctuating mutations became incorporated into viable genomes. While 17 mutations were scored in 3 biological clones isolated from the initial population, the number reached 72 in 3 biological clones from the population at passage 200. Biological clones differed in their responses to antiviral inhibitors, indicating a phenotypic impact of viral dynamics. Thus, HCV adaptation to a specific constant environment (cell culture without external influences) broadens the mutant repertoire and does not focus the population toward a limited number of dominant genomes. A retrospective examination of mutant spectra of foot-and-mouth disease virus passaged in cell cultures suggests a parallel behavior here described for HCV. We propose that virus diversification in a constant environment has its basis in the availability of multiple alternative mutational pathways for fitness gain. This mechanism of broad diversification should also apply to other replicative systems characterized by high mutation rates and large population sizes. IMPORTANCE The study shows that extensive replication of an RNA virus in a constant biological environment does not limit exploration of sequence space and adaptive options. There was no convergence toward a restricted set of adapted genomes. Mutational waves and mutant spectrum broadening affected infectious genomes. Therefore, profound modifications of mutant spectrum composition and consensus sequence diversification are not exclusively dependent on environmental alterations or the intervention of population bottlenecks.
Although Pneumocystis jirovecii is a well-known and serious pathogen, all previous attempts to isolate, cultivate, and propagate this fungus have failed. This serious challenge in microbiology was addressed in the present study. We examined whether P. jirovecii could be cultured in a permanent three-dimensional air-liquid interface culture system formed by CuFi-8 cells, a differentiated pseudostratified airway epithelial cell line. Cultured pseudostratified cells were inoculated with bronchoalveolar fluid that had been confirmed to be positive for P. jirovecii using PCR. Five days later, the cells and basal medium were harvested and tested for P. jirovecii using quantitative PCR (qPCR), commercially available immunofluorescence detection assays, and Grocott staining of formalin-fixed, paraffin-embedded thin sections of infected-cell cultures. We successfully productively cultivated and propagated P. jirovecii from these P. jirovecii-positive bronchoalveolar lavage fluid (BALF) samples. Furthermore, we provide evidence that P. jirovecii induced cytopathic effects on lung epithelial cells and was even invasive in cell culture. To the best of our knowledge, the cell culture system developed herein represents the first methodology to enable molecular analyses of this pathogen’s life cycle and further in vitro studies of P. jirovecii, such as assessments of drug sensitivity and resistance as well as investigations of the pathogen’s stability against environmental factors and disinfectants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.