The potentiality of nanomedicine in the cancer treatment being widely recognized in the recent years. In the present investigation, the synergistic effects of chitosan-modified selenium nanoparticles loaded with paclitaxel (PTX-chit-SeNPs) were studied. These selenium nanoparticles were tested for drug release analysis at a pH of 7.4 and 5.5, and further characterized using FTIR, DLS, zeta potential, and TEM to confirm their morphology, and the encapsulation of the drug was carried out using UPLC analysis. Quantitative evaluation of anti-cancer properties was performed via MTT analysis, apoptosis, gene expression analysis, cell cycle arrest, and over-production of ROS. The unique combination of phytochemicals from the seed extract, chitosan, paclitaxel, and selenium nanoparticles can be effectively utilized to combat cancerous cells. The production of the nanosystem has been demonstrated to be cost-effective and have unique characteristics, and can be utilized for improving future diagnostic approaches.
Despite many efforts over the last few decades, cardiac-based drug delivery systems are experiencing major problems, such as the effective delivery of the precise amount of a drug. In the current study, an effort has been made to prepare a nano-herbformulation (NHF) to overcome the major problem of conventional intervention. Copper oxide-based NHF was prepared using plant extract of Alternanthera sessilis and characterized using physicochemical techniques such as Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Dynamic light scattering (DLS), UV-Vis spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). TEM analysis revealed that spherical NHF obtained of size 20–50 nm. In addition, XRD and FTIR confirmed the presence of phytochemicals with biological properties over the surface of copper oxide-based NHF. It was demonstrated that dose-dependent antiapoptotic activity was shown against DOX-induced cardiomyocytes, where ROS levels were significantly reduced to 0.29% from 37.99%. The results of the flow cytometry analysis using PI and Annexin staining further confirmed the antiapoptotic activity of NHF against DOX-induced cardiomyocytes by ROS scavenging. Thus, NHF might be used for cardiovascular disease treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.